Background:Cancer-associated fibroblasts (CAFs) activated by tumour cells are the predominant type of stromal cells in breast cancer tissue. The reciprocal effect of CAFs on breast cancer cells and the underlying molecular mechanisms are not fully characterised.Methods:Stromal fibroblasts were isolated from invasive breast cancer tissues and the conditioned medium of cultured CAFs (CAF-CM) was collected to culture the breast cancer cell lines MCF-7, T47D and MDA-MB-231. Neutralising antibody and small-molecule inhibitor were used to block the transforming growth factor-β (TGF-β) signalling derived from CAF-CM, which effect on breast cancer cells.Results:The stromal fibroblasts isolated from breast cancer tissues showed CAF characteristics with high expression levels of α-smooth muscle actin and SDF1/CXCL12. The CAF-CM transformed breast cancer cell lines into more aggressive phenotypes, including enhanced cell–extracellular matrix adhesion, migration and invasion, and promoted epithelial–mesenchymal transition (EMT). Cancer-associated fibroblasts secreted more TGF-β1 than TGF-β2 and TGF-β3, and activated the TGF-β/Smad signalling pathway in breast cancer cells. The EMT phenotype of breast cancer cells induced by CAF-CM was reversed by blocking TGF-β1 signalling.Conclusion:Cancer-associated fibroblasts promoted aggressive phenotypes of breast cancer cells through EMT induced by paracrine TGF-β1. This might be a common mechanism for acquiring metastatic potential in breast cancer cells with different biological characteristics.
Bone is one of the most common organs of breast cancer metastasis. Cancer cells that mimic osteoblasts by expressing bone matrix proteins and factors have a higher likelihood of metastasizing to bone. However, the molecular mechanisms of osteomimicry formation of cancer cells remain undefined. Herein, we identified a set of bone-related genes (BRGs) that are ectopically co-expressed in primary breast cancer tissues and determined that osteomimetic feature is obtained due to the osteoblast-like transformation of epithelial breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) followed by bone morphogenetic protein-2 (BMP2) stimulation. Furthermore, we demonstrated that breast cancer cells that transformed into osteoblast-like cells with high expression of BRGs showed enhanced chemotaxis, adhesion, proliferation and multidrug resistance in an osteoblast-mimic bone microenvironment in vitro. During these processes, runt-related transcription factor 2 (RUNX2) functioned as a master mediator by suppressing or activating the transcription of BRGs that underlie the dynamic antagonism between the TGF-β/SMAD and BMP/SMAD signaling pathways in breast cancer cells. Our findings suggest a novel mechanism of osteomimicry formation that arises in primary breast tumors, which may explain the propensity of breast cancer to metastasize to the skeleton and contribute to potential strategies for predicting and targeting breast cancer bone metastasis and multidrug resistance.
It has been suggested that matrix metalloproteinase (MMP) polymorphisms are associated with the pathogenesis of aortic aneurysmal diseases. In this study, we conducted a systematic review with an update meta-analysis to investigate the relationship between MMP family polymorphisms and aortic aneurysmal diseases. We systematically reviewed 24 polymorphisms in 8 MMP genes related to the risk of abdominal aortic aneurysm (AAA), thoracic AA or thoracic aortic dissection (TAD). A total of 19 case-control studies with 15 highly studied MMP polymorphisms were included in our meta-analysis. Our results suggested that MMP2rs243865,
Transforming growth factor-β1 (TGF-β1) signaling and high mobility group A (HMGA1) are known to play essential roles in the progression of breast cancer by inducing epithelial-mesenchymal transition. However, the correlation between TGF-β1 and HMGA1 in breast cancer cell is not yet well understood. In this study, we determined the effects of TGF-β1 on HMGA1 expression in breast cancer cells and examined the role of HMGA1 in breast cancer progression. Our results demonstrated that TGF-β1 induced the expression of HMGA1 in both MCF-7 and MDA-MB-231 breast cancer cells, as shown by RT-qPCR and immunofluorescence staining; however, the TGF-β1-induced expression of HMGA was blocked by treatment of the cells with phosphatidylinositol-3 kinase (PI3K) signaling inhibitors. Moreover, the HMGA1 promoter activity was found to be activated by TGF-β1 in the MCF-7 and MDA-MB-231 cells and we found that specificity protein 1 (Sp1) was involved in the TGF-β1-induced HMGA1 promoter activity, as shown by luciferase activity assay. Furthermore, the enforced expression of HMGA1 by transfection with a HMGA1 promoter enhanced cellular oncogenic properties, including proliferation, migration and invasion, and a tissue microarray revealed that breast tumors expressing human epidermal growth factor receptor 2 (HER2) showed higher expression levels of HMGA1 (P=0.007). In addition, higher HMGA1 expression levels were also observed in the ductal breast cancer cases compared with the lobular breast cancer cases (P=0.000). These findings establish the first link between HMGA1 and TGF-β1 in breast cancer, providing further evidence of the pivotal role of HMGA1 in breast cancer progression.
Human epidermal growth factor receptor 2 (HER2) is one of the most important prognostic and predictive factors for breast cancer patients. Recently, serum HER2 ECD level of patients detected by enzyme-linked immunoabsorbent assay (ELISA) has been shown to predict tumor HER2 status and reveal its association with tumor progression, recurrence and poor prognosis. In this study, we established a new method, dot blot assay, to measure the serum HER2 level in breast cancer patients and further to evaluate the clinical value for monitoring breast cancer progression. We found that the serum HER2 level measured by dot blot assay was significantly correlated with tissue HER2 status in breast cancer patients (P = 0.001), and also significantly correlated with HER2 level measured by ELISA (P = 1.06×10−11). Compared with ELISA method, the specificity and sensitivity of dot blot assay were 95.3% and 65.0%, respectively. The serum HER2 levels of patients with grade III or ER-negative were higher than those with grade I–II (P = 0.004) and ER-positive (P = 0.033), respectively. Therefore, the novel dot blot method to detect serum HER2 level is a valid and inexpensive assay with potential application in monitoring breast cancer progression in clinical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.