Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic oral agents indicating promising effects on cardiovascular and renal end points. However, the renoprotective effects of SGLT2 inhibitors are not fully understood. Also, metabolic effects of SGLT2 inhibition on other organ systems, such as effects on hepatic steatosis, are not fully understood. This study sought to address these questions by treating 18-wk-old uninephrectomized mice with the selective SGLT2 inhibitor dapagliflozin. Untreated mice developed progressive albuminuria, glomerular mesangial matrix expansion, and fatty liver associated with increased renal expression of TGFβ1, PAI-1, type IV collagen and fibronectin, and liver deposition of fibronectin, type I and III collagen, and laminin. Treatment with dapagliflozin (1 mg·kg·day) via gel diet from 18 to 22 wk of age not only reduced blood glucose (371.14 ± 55.02 mg/dl in treated vs. 573.53 ± 21.73 mg/dl in untreated, < 0.05) and Hb A levels (9.47 ± 0.79% in treated vs. 12.1 ± 0.73% in untreated, < 0.05) but also ameliorated the increases in albuminuria and markers of glomerulosclerosis and liver injury seen in untreated mice. Furthermore, both renal expressions of NF-kB p65, MCP-1, Nox4, Nox2, and p47phox and urine TBARS levels and liver productions of myeloperoxidase and reactive oxygen species, the markers of tissue inflammation and oxidative stress, were increased in untreated mice, which were reduced by dapagliflozin administration. These results demonstrate that dapagliflozin not only improves hyperglycemia but also slows the progression of diabetes-associated glomerulosclerosis and liver fibrosis by improving hyperglycemia-induced tissue inflammation and oxidative stress.
The study tested the influence of prostaglandin E2 (PGE2) on the skeletal response to increased in vivo mechanical loading through a four-point bending device. One hundred and twenty Sprague-Dawley female rats (6 months old, 354 +/- 34 g) were divided into 12 groups to accommodate all possible combinations of doses of loads (25, 30, or 35 N) and PGE2 (0, 0.1, 0.3, or 1 mg/kg). Rats received subcutaneous injections of PGE2 daily and in vivo loading of the right tibia every Monday, Wednesday, and Friday for four weeks. Histomorphometric analysis of the periosteal and endocortical surfaces following in vivo dual fluorochrome labeling was performed on both the loaded region of the right tibial diaphysis and a similar region of the left tibial diaphysis. Without PGE2, the threshold for loading to stimulate bone formation was 30 N (peak strain 1360 mu epsilon) at the periosteal surface and 25 N (peak strain 580 mu epsilon) at the endocortical surface. Without loading, the minimum dose of PGE2 to stimulate bone formation at all surfaces was 1 mg/kg/day. When 1 mg/kg/day PGE2 was combined with the minimum effective load, an additive effect of PGE2 and loading on bone formation was observed at the endocortical surface, but a synergistic effect was noted at the periosteal surface. No combined effect of ineffective doses of loading and PGE2 was found. A synergistic effect at peak strains of approximately 1625 mu epsilon on the periosteal surface could suggest either the involvement of locally produced growth factors or autoregulation of endogenous synthesis of PGE2 by exogenously administered PGE2.
Adiponectin (ApN) is a multifunctional adipokine. However, high, rather than low, concentrations of ApN are unexpectedly found in patients with chronic kidney disease (CKD) via an as yet unknown mechanism, and the role of ApN in CKD is unclear. Herein, we investigated the effect of ApN overexpression on progressive renal injury resulting from deoxycorticosterone acetate-salt (DOCA) and angiotensin II (ANG II) infusion using a transgenic, inducible ApN-overexpressing mouse model. Three groups of mice [wild type receiving no infusion (WT) and WT and cytochrome P450 1a1 (cyp1a1)-ApN transgenic mice (ApN-Tg) receiving DOCA+ANG II infusion (WT/DOCA+ANG II and ApN-Tg/DOCA+ANG II)] were assigned to receive normal food containing 0.15% of the transgene inducer indole-3-carbinol (I3C) for 3 wk. In the I3C-induced ApN-Tg/DOCA+ANG II mice, not the WT or WT/DOCA+ANG II mice, overexpression of ApN in liver resulted in 3.15-fold increases in circulating ApN compared with nontransgenic controls. Of note, the transgenic mice receiving DOCA+ANG II infusion were still hypertensive but had much less albuminuria and glomerular and tubulointerstitial fibrosis, which were associated with ameliorated podocyte injury determined by ameliorated podocyte loss and foot process effacement, and alleviated tubular injury determined by ameliorated mRNA overexpression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin and mRNA decreases of cubilin and megalin in tubular cells, compared with WT/DOCA+ANG II mice. In addition, renal production of NF-κB-p65, NAPDH oxidase 2, and p47 and MAPK-related cellular proliferation, which were induced in WT/DOCA+ANG II mice, were markedly reduced in ApN-Tg/DOCA+ANG II mice. These results indicate that elevated ApN in the CKD mouse model is renal protective. Enhancing ApN production or signaling may have therapeutic potential for CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.