The real-time thermal–mechanical–frictional coupling characteristics of bearings are critical to the accuracy, reliability, and life of entire machines. To obtain the real-time dynamic characteristics of ball bearings, a novel model to calculate point contact dynamic friction in mixed lubrication was firstly presented in this work. The model of time-varying thermal contact resistance under fit between the ring and the ball, between the ring and the housing, and between the ring and the shaft was established using the fractal theory and the heat transfer theory. Furthermore, an inverse thermal network method with time-varying thermal contact resistance was presented. Using these models, the real-time thermal–mechanical–frictional coupling characteristics of ball bearings were obtained. The effectiveness of the presented models was verified by experiment and comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.