This article reviews the current state of knowledge about the bestrophins, a newly identified family of proteins that can function both as Cl(-) channels and as regulators of voltage-gated Ca(2+) channels. The founding member, human bestrophin-1 (hBest1), was identified as the gene responsible for a dominantly inherited, juvenile-onset form of macular degeneration called Best vitelliform macular dystrophy. Mutations in hBest1 have also been associated with a small fraction of adult-onset macular dystrophies. It is proposed that dysfunction of bestrophin results in abnormal fluid and ion transport by the retinal pigment epithelium, resulting in a weakened interface between the retinal pigment epithelium and photoreceptors. There is compelling evidence that bestrophins are Cl(-) channels, but bestrophins remain enigmatic because it is not clear that the Cl(-) channel function can explain Best disease. In addition to functioning as a Cl(-) channel, hBest1 also is able to regulate voltage-gated Ca(2+) channels. Some bestrophins are activated by increases in intracellular Ca(2+) concentration, but whether bestrophins are the molecular counterpart of Ca(2+)-activated Cl(-) channels remains in doubt. Bestrophins are also regulated by cell volume and may be a member of the volume-regulated anion channel family.
Ca2+ -activated Cl − channels (CaCCs) perform many important functions in cell physiology including secretion of fluids from acinar cells of secretory glands, amplification of olfactory transduction, regulation of cardiac and neuronal excitability, mediation of the fast block to polyspermy in amphibian oocytes, and regulation of vascular tone. Although a number of proteins have been proposed to be responsible for CaCC currents, the anoctamin family (ANO, also known as TMEM16) exhibits characteristics most similar to those expected for the classical CaCC. Interestingly, this family of proteins has previously attracted the interest of both developmental and cancer biologists. Some members of this family are up-regulated in a number of tumours and functional deficiency in others is linked to developmental defects.
Mutations in human bestrophin-1 (VMD2) are genetically linked to several forms of retinal degeneration but the underlying mechanisms are unknown. Bestrophin-1 (hBest1) has been proposed to be a Cl− channel involved in ion and fluid transport by the retinal pigment epithelium (RPE). To date, however, bestrophin currents have only been described in overexpression systems and not in any native cells. To test whether bestrophins function as Ca2+-activated Cl− (CaC) channels physiologically, we used interfering RNA (RNAi) in the Drosophila S2 cell line. S2 cells express four bestrophins (dbest1–4) and have an endogenous CaC current. The CaC current is abolished by several RNAi constructs to dbest1 and dbest2, but not dbest3 or dbest4. The endogenous CaC current was mimicked by expression of dbest1 in HEK cells, and the rectification and relative permeability of the current were altered by replacing F81 with cysteine. Single channel analysis of the S2 bestrophin currents revealed an ∼2-pS single channel with fast gating kinetics and linear current–voltage relationship. A similar channel was observed in CHO cells transfected with dbest1, but no such channel was seen in S2 cells treated with RNAi to dbest1. This provides definitive evidence that bestrophins are components of native CaC channels at the plasma membrane.
Mutations in human bestrophin-1 (VMD2) are genetically linked to a juvenile form of macular degeneration and autosomal dominant vitreoretinochoroidopathy. Recently, it has been proposed that bestrophins are Cl Ϫ channels and that the putative second transmembrane domain participates in forming the bestrophin pore. However, the structural determinants of Cl Ϫ ion permeation through the channel pore are not known. Here we systematically replaced every amino acid in mouse bestrophin-2 (mBest2) between positions 69 and 104 with cysteine. We then measured the effects on the relative permeability and conductance of the channel to Cl Ϫ and SCN Ϫ (thiocyanate) and determined the accessibility of the cysteine-substituted amino acids to extracellularly applied, membrane-impermeant sulfhydryl reagents. Unlike K ϩ channels, the amino acids forming the mBest2 selectivity filter are not discretely localized but are distributed over ϳ20 amino acids within the transmembrane domain. Cysteine-substituted amino acids in the selectivity filter are easily accessible to extracellularly applied sulfhydryl reagents and select for anionic sulfhydryl reagents over cationic ones. Understanding the structure of the anion conduction pathway of bestrophins provides insights into how mutations produce channel dysfunction and may provide important information for development of therapeutic strategies for treating macular degeneration.
Recent evidence suggests that Cl(-) ion channels are important for retinal integrity. Bestrophin Cl(-) channel mutations in humans are genetically linked to a juvenile form of macular degeneration, and disruption of some ClC Cl(-) channels in mice leads to retinal degeneration. In both cases, accumulation of lipofuscin pigment is a key feature of the cellular degeneration. Because Cl(-) channels regulate the ionic environment inside organelles in the endosomal-lysosomal pathway, retinal degeneration may result from defects in lysosomal trafficking or function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.