Considering the increasingly tense relationship between construction land supply and demand, we study the inherent rules and the spatial evolution in construction land use. In order to solve the problem of parameter optimization effectively, we analysis the fundamental theory of Support Vector Machine and finally accomplish the combination of genetic algorithm and support vector machine. Meanwhile we apply this model to analysis the construction land use and propose a new model, which is based on the support vector machines with genetic algorithm, for construction land evolution. Taking Guandu district in Kunming, Yunnan as a case, we find out that the new model is far superior to recent models in terms of predicting accuracy, algorithm complexity and computational efficiency. And therefore, we believe that this is highly precise, practical and efficient model for forecasting construction land use and evolution.
Background Sphingolipids produce pleiotropic signaling pathways, and participate in the pathological mechanism of hepatocyte apoptosis and necrosis during liver injury. However, the role of glucosylceramide synthase (GCS)–key enzyme that catalyzes the first glycosylation step, in liver injury is still vague. Methods All experiments were conducted using 7–9-week-old pathogen-free male C57BL/6 mice. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected in murine models of liver disease, in addition to histological characterization of liver injuries. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative expression of the GCS, matrix metallopeptidase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) genes. The GCS was observed through a fluorescence microscope, and the flow cytometry was used to detect hepatocyte apoptosis. The concentrations of serum IL-4, IL-6, and IL-10 were measured using enzyme-linked immune-sorbent assay (ELISA) kit. MMP-1 and TIMP-1 protein expression was measured via western blot (WB) analysis. Results Con A is often used as a mitogen to activate T lymphocytes and promote mitosis. A single dose of Con A injected intravenously will cause a rapid increase of ALT and AST, which is accompanied by the release of cytokines that cause injury and necrosis of hepatocytes. In this study, we successfully induced acute immune hepatitis in mice by Con A. Con A administration resulted in GCS upregulation in liver tissues. Moreover, the mice in the Con A group had significantly higher levels of ALT, AST, IL-4, IL-6, IL-10 and increased hepatocyte apoptosis than the control group. In contrast, all of the aforementioned genes were significantly downregulated after the administration of a GCS siRNA or Genz-123346 (i.e., a glucosylceramide synthase inhibitor) to inhibit the GCS gene. Additionally, the histopathological changes observed herein were consistent with our ALT, AST, IL-4, IL-6, and IL-10 expression results. However, unlike this, hepatocyte apoptosis has been further increased on the basis of the Con A group. Moreover, our qRT-PCR and WB results indicated that the expression of MMP-1 in the Con A group was significantly lower than that in the control group, whereas TIMP-1 exhibited the opposite trend. Conversely, MMP-1 expression in the GCS siRNA and Genz-123346 groups was higher than that in the Con A group, whereas TIMP-1 expression was lower. Conclusions GCS inhibition reduces Con A-induced immune-mediated liver injury in mice, which may be due to the involvement of GCS in the hepatocyte repair process after injury.
Event-driven systems and thread-driven systems are two major design philosophies of operating system in wireless sensor networks. Systems based on multi-threaded are more timeliness than the event-driven systems, which can meet the requirements of time-critical tasks by means of task preemption, while systems based on event-driven are more energy efficient.The article introduces a task scheduling module in event-driven system. The module takes a kind of priority table query method to choose the most important task with highest priority to schedule.It is seen that the module is suitable wireless sensor network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.