A solid oxide fuel cell (SOFC) system is a kind of green chemical-energy–electric-energy conversion equipment with broad application prospects. In order to ensure the long-term stable operation of the SOFC power-generation system, prediction and evaluation of the system’s operating state are required. The mechanism of the SOFC system has not been fully revealed, and data-driven single-step prediction is of little value for practical applications. The state-prediction problem can be regarded as a time series prediction problem. Therefore, an innovative deep learning model for SOFC system state prediction is proposed in this study. The model uses a two-layer LSTM network structure that supports multiple sequence feature inputs and flexible multi-step prediction outputs, which allows multi-step prediction of system states using SOFC system experimental data. Comparing the proposed model with the traditional ARIMA model and LSTM recursive prediction model, it is shown that the multi-step LSTM prediction model performs better than the ARIMA and LSTM recursive prediction models in terms of two evaluation criteria: root mean square error and mean absolute error. Thus, the proposed multi-step LSTM prediction model can effectively and accurately predict and evaluate the SOFC system’s state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.