Pulmonary hypertension should be preoperatively evaluated for optimal surgical planning to reduce surgical risk in lung cancer patients. Preoperative measurement of vascular diameter in computed tomography (CT) images is a noninvasive prediction method for pulmonary hypertension. However, the current estimation method, 2D manual arterial diameter measurement, may yield inaccurate results owing to low tissue contrast in non-contrast-enhanced CT (NECT). Furthermore, it provides an incomplete evaluation by measuring only the diameter of the arteries rather than the volume. To provide a more complete and accurate estimation, this study proposed a novel two-stage deep learning (DL) model for 3D aortic and pulmonary artery segmentation in NECT. In the first stage, a DL model was constructed to enhance the contrast of NECT; in the second stage, two DL models then applied the enhanced images for aorta and pulmonary artery segmentation. Overall, 179 patients were divided into contrast enhancement model (n = 59), segmentation model (n = 120), and testing (n = 20) groups. The performance of the proposed model was evaluated using Dice similarity coefficient (DSC). The proposed model could achieve 0.97 ± 0.66 and 0.93 ± 0.16 DSC for aortic and pulmonary artery segmentation, respectively. The proposed model may provide 3D diameter information of the arteries before surgery, facilitating the estimation of pulmonary hypertension and supporting preoperative surgical method selection based on the predicted surgical risks.
It remains a challenge to preoperatively forecast whether lung pure ground-glass nodules (pGGNs) have invasive components. We aimed to construct a radiomic model using tumor characteristics to predict the histologic subtype associated with pGGNs. We retrospectively reviewed clinicopathologic features of pGGNs resected in 338 patients with lung adenocarcinoma between 2011–2016 at a single institution. A radiomic prediction model based on forward sequential selection and logistic regression was constructed to differentiate adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma. The study cohort included 133 (39.4%), 128 (37.9%), and 77 (22.8%) patients with AIS, MIA, and invasive adenocarcinoma (acinar 55.8%, lepidic 33.8%, papillary 10.4%), respectively. The majority (83.7%) underwent sublobar resection. There were no nodal metastases or tumor recurrence during a mean follow-up period of 78 months. Three radiomic features—cluster shade, homogeneity, and run-length variance—were identified as predictors of histologic subtype and were selected to construct a prediction model to classify the AIS/MIA and invasive adenocarcinoma groups. The model achieved accuracy, sensitivity, specificity, and AUC of 70.6%, 75.0%, 70.0%, and 0.7676, respectively. Applying the developed radiomic feature model to predict the histologic subtypes of pGGNs observed on CT scans can help clinically in the treatment selection process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.