Liposomes (70-100 nm) of 1-palmitoyl-2-oleoylphosphatidylcholine, cholesterol, and poly(ethylene glycol) (PEG)-modified phosphatidylethanolamine (PEG-DSPE) were conjugated to Fab' fragments of a humanized recombinant MAb against the extracellular domain of HER2/neu to create sterically stabilized immunoliposomes (anti-HER2 SL) as a drug carrier targeting HER2-overexpressing cancers. Conjugation employed maleimide-terminated membrane-anchored spacers of two kinds: a short spacer, providing attachment of Fab' close to the liposome bilayer, or a long spacer, with Fab' attachment at the distal terminus of the PEG chain. Confocal microscopy and spectrofluorometry of HER2-overexpressing breast cancer cells incubated with fluorescently labeled anti-HER2 SL prepared with either spacer showed binding of liposomes (8000-23000 vesicles/cell) followed by endocytosis (rate constant ke = 0.012-0.033 min-1) via the coated-pit pathway, evidenced by intracellular acidification and colocalization with transferrin. Uptake of anti-HER2 immunoliposomes by breast cancer cells with low HER2 expression, or after preincubation of cells with free anti-HER2 Fab', was less than 0.2% and 4.3%, respectively, of the uptake by HER2-overexpressing cells. Increasing PEG-DSPE content (up to 5.7 mol %) in anti-HER2-SL prepared with the short spacer decreased liposome-cell binding affinity 60-100-fold, while ke decreased only 2-fold; however, when Fab' fragments were conjugated via a PEG spacer, both binding affinity and ke were unaffected by PEG-DSPE content. Cell binding and internalization of anti-HER2 immunoliposomes increased at higher surface density of conjugated Fab' fragments, reaching plateaus at approximately 40 Fab'/liposome for binding and approximately 10-15 Fab'/liposome for internalization. Uptake of anti-HER2 immunoliposomes correlated with the cell surface density of HER2 and significantly (p < 0.005) correlated with the antiproliferative effect of the targeting antibody but not with the total level of cellular HER2 expression. The results obtained were used to optimize in vivo preclinical studies of anti-HER2 SL loaded with antineoplastic drugs.
Background Long noncoding RNAs (lncRNAs) have been indicated to play critical roles in cancer development and progression. LncRNA HOXD cluster antisense RNA1 (HOXD-AS1) has recently been found to be dysregulated in several cancers. However, the expression levels, cellular localization, precise function and mechanism of HOXD-AS1 in colorectal carcinoma (CRC) are largely unknown. Methods Real-time PCR and in situ hybridization were used to detect the expression of HOXD-AS1 in CRC tissue samples and cell lines. Gain- and loss-of-function experiments were performed to investigate the biological roles of HOXD-AS1 in CRC cell line. RNA pull down, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to investigate the mechanisms underlying the functions of HOXD-AS1 in CRC. Results We observed that HOXD-AS1 was located in the nucleus of CRC cells and that nuclear HOXD-AS1 was downregulated in most CRC specimens and cell lines. Lower levels of nuclear HOXD-AS1 expression were associated with poor outcomes of CRC patients. HOXD-AS1 downregulation enhanced proliferation and migration of CRC cells in vitro and facilitated CRC tumourigenesis and metastasis in vivo. Mechanistic investigations revealed that HOXD-AS1 could suppress HOXD3 transcription by recruiting PRC2 to induce the accumulation of the repressive marker H3K27me3 at the HOXD3 promoter. Subsequently, HOXD3, as a transcriptional activator, promoted Integrin β3 transcription, thereby activating the MAPK/AKT signalling pathways. Conclusion Our results reveal a previously unrecognized HOXD-AS1-HOXD3-Integrin β3 regulatory axis involving in epigenetic and transcriptional regulation constitutes to CRC carcinogenesis and progression. Electronic supplementary material The online version of this article (10.1186/s12943-019-0955-9) contains supplementary material, which is available to authorized users.
BackgroundIncreasing evidence has revealed that microRNAs (miRNA) played a pivotal role in regulating cancer cell proliferation and metastasis. The deregulation of miR-182 has been identified in colorectal cancer (CRC). However, the role and mechanism of miR-182 in CRC have not been completely understood yet.MethodsThe expression levels of miR-182 in CRC tissues and CRC cell lines were examined by performing stem-loop quantitative RT-PCR. The stable over-expression miR-182 cell lines and control cell lines were constructed by lentivirus infection. Subsequently, CCK-8 assay, plate colony formation assay, cell migration, invasion assay and experimental animal models were performed to detect the biological functions of miR-182 in vitro and in vivo. A luciferase reporter assay was conducted to confirm target associations. Western blot and immunohistochemical analysis were performed to examine the expression changes of molecular markers that are regulated by miR-182.ResultsWe found that miR-182 expression is increased in CRC cells that originated from metastatic foci and human primary CRC tissues with lymph node metastases. The ectopic expression of miR-182 enhanced cell proliferation, invasion, and migration in vitro. Stable overexpression of miR-182 also facilitated tumor growth and metastasis in vivo too. Further research showed that miR-182 could directly target the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2, which we identified in previous studies as a CRC metastasis-associated protein. Restoring SATB2 expression could reverse the effects of miR-182 on CRC cell proliferation and migration. Investigations of possible mechanisms underlying these behaviors induced by miR-182 revealed that miR-182 induced epithelial-mesenchymal transition (EMT) by modulating the expression of key cellular molecules in EMT.ConclusionsOur results illustrated that the up-regulation of miR-182 played a pivotal role in CRC tumorigenesis and metastasis, which suggesting a potential implication of miR-182 in the molecular therapy for CRC.
G protein-coupled receptor 81 (GPR81) inhibition attenuated ischemic neuronal death. Lactate may aggravate ischemic brain injury by activating GPR81. GPR81 antagonism might be a novel therapeutic strategy for the treatment of cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.