The paper presents numerical investigation of cavitating turbulent flow in a high head Francis turbine runner fitted with splitter blades at part load operation. Analysis was performed by OpenFOAM code. A mixture assumption and a finite rate mass transfer model were introduced. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results show that the volume fraction of water vapor and the pressure uneven distribution on the main blade and splitter blade. It will lead to cavitation and fatigue damage.
The change of mechanical torque is usually ignored in small disturbance of power systems, which means that influences of the hydro turbine and governor system (HTGS) have been ignored. The disturbance characteristics of the hydro turbine generating units including the HTGS is studied based on torque coefficients method in this paper, and calculating method and expressions of torque coefficients of the HTGS are given. The additional mechanical damping produced by the HTGS can be expressed as DtΔω, therefore, it can be merged into the damping item in the motion equation of generator, that means that its action is equivalent to modify damping coefficient D. Using a case, the analysis and calculation method are introduced, and several conclusions are given.
The vortex structure of two-dimensional flow in a cavity is calculated using the differential quadrature method. The numerical simulation focuses on investigating the effects of Reynolds number on vortex structure evolution of the flow in a square cavity with two opposite and equal speed moving lids. The streamline patterns and bifurcation diagrams are determined. The numerical results show that the flow in the cavity takes on the streamline pattern of completely symmetric vortex structure when the Reynolds number approaches zero. With the Reynolds number increasing, the sizes and center positions of the sub-vortexes appear to be affected, whereas the saddle point is still located at the cavity center, resulting in a skewed flow pattern in the cavity. It is observed that one large vortex occupies the entire cavity and the shape of the large vortex becomes more circular after a critical value of the Reynolds number is exceeded. If the Reynolds number is increased further, two secondary eddies emerge simultaneously on the upper left corner and the lower right corner near the sidewalls. The center of the large vortex is invariably located at the cavity centre. For different Reynolds numbers, the streamline patterns are symmetric about the cavity center which is always a stagnation point.
The vortex structure of lid-driven flow in a cuboid cavity with one or a pair of moving lids is numerated using the differential quadrature method (DQM). According to the characteristics of cavity driven flow, the dimensionless governing equations and its boundary conditions used to describe the flow are established. Based on a non-staggered grid technology, the polynomial-based DQM is combined with the SIMPLE strategy to solve three-dimensional (3D) cavity driven flow. The suitable boundary condition for pressure correction equation on a non-staggered system is implemented and the continuity equation on the boundary is enforced to be satisfied. The 3D vortex structure distributions in a cuboid cavity are obtained for different Reynolds numbers and different driving modes. The analysis shows that the DQM is very suitable for the simulation of 3D vortex structure in a cavity.
The paper presents numerical simulation of blade channel vortex in a low head Francis turbine using OpenFoam code. A mixture assumption and a finite rate mass transfer model were introduced to analyze blade channel vortex. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that using cavitation model to analyze blade channel vortex is very effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.