The traditional dimission prediction method for knowledge workers does not take into account the impact of job burnout on employees’ dimission tendency, resulting in low accuracy of dimission prediction. In view of the above problems, this paper introduces the employee burnout evaluation and researches the knowledge employee burnout evaluation and turnover tendency prediction method based on BP neural network. After analyzing the influencing factors of job burnout of knowledge workers, the evaluation index system of job burnout is established. The weight of the job burnout evaluation index was determined by fuzzy hierarchy, and BP neural network model was established. Boosting method added the fusion layer of the correlation analysis of job burnout and turnover intention to the neural network model to predict the turnover intention of employees. In the method test, the accuracy rate of employee turnover tendency prediction is higher than 90%, the reliability of employee burnout evaluation is higher, and it is more helpful for human resource management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.