Epidemiologic studies associate consumption of genistein, in the form of dietary soy, with lower rates of metastatic prostate cancer. We have previously shown that genistein inhibits prostate cancer cell detachment in vitro, that it is well tolerated in an older cohort of men with prostate cancer, and that it alters cell signaling in that same cohort. We have also shown that p38 mitogen-activated protein kinase (MAPK) is necessary for transforming growth factor beta (TGF-beta)-mediated increases in prostate cancer adhesion. Although cell invasion is closely linked to metastatic behavior, little is known about how this process is regulated in prostate cancer or what effect, if any, genistein has on associated processes. We now show that genistein inhibits matrix metalloproteinase type 2 (MMP-2) activity in six of seven prostate cell lines tested, blocks MMP-2 induction by TGF-beta, and inhibits cell invasion. Efficacy was seen at low nanomolar concentrations, corresponding to blood concentrations of free genistein attained after dietary consumption. Inhibition of p38 MAPK by either SB203580 or dominant-negative construct blocked induction of MMP-2 and cell invasion by TGF-beta. Genistein exerted similar effects and was found to block activation of p38 MAPK by TGF-beta. This study shows that p38 MAPK is necessary for TGF-beta-mediated induction of MMP-2 and cell invasion in prostate cancer and that genistein blocks activation of p38 MAPK, thereby inhibiting processes closely linked to metastasis, and does so at concentrations associated with dietary consumption. Any potential causal link to epidemiologic findings will require further investigation.
Although cell invasion is a necessary early step in cancer metastasis, its regulation is not well understood. We have previously shown, in human prostate cancer, that transforming growth factor beta (TGFbeta)-mediated increases in cell invasion are dependent upon activation of the serine/threonine kinase, p38 MAP kinase. In the current study, downstream effectors of p38 MAP kinase were sought by first screening for proteins phosphorylated after TGFbeta treatment, only in the absence of chemical inhibitors of p38 MAP kinase. This led us to investigate mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2), a known substrate of p38 MAP kinase, as well as heat-shock protein 27 (HSP27), a known substrate of MAPKAPK2, in both PC3 and PC3-M human prostate cells. After transient transfection, wild-type MAPKAPK2 and HSP27 both increased TGFbeta-mediated matrix metalloproteinase type 2 (MMP-2) activity, as well as cell invasion, which in turn was inhibited by SB203580, an inhibitor of p38 MAP kinase. Conversely, dominant-negative MAPKAPK2 blocked phosphorylation of HSP27, whereas dominant-negative MAPKAPK2 or mutant, non-phosphorylateable, HSP27 each blocked TGFbeta-mediated increases in MMP-2, as well as cell invasion. Similarly, knock down of MAPKAPK2, HSP27 or both together, by siRNA, also blocked TGFbeta-mediated cell invasion. This study demonstrates that both MAPKAPK2 and HSP27 are necessary for TGFbeta-mediated increases in MMP-2 and cell invasion in human prostate cancer.
Dietary genistein has been linked to lower prostate cancer (PCa) mortality. Metastasis is the ultimate cause of death from PCa. Cell detachment and invasion represent early steps in the metastatic cascade. We had shown that genistein inhibits PCa cell detachment and cell invasion in vitro. Genistein-mediated inhibition of activation of focal adhesion kinase (FAK) and of the p38 mitogen-activated protein kinase (MAPK)-heat shock protein 27 (HSP27) pathway has been shown by us to regulate PCa cell detachment and invasion effects, respectively. To evaluate the antimetastatic potential of genistein, we developed an animal model suited to evaluating antimetastatic drug efficacy. Orthotopically implanted human PC3-M PCa cells formed lung micrometastasis by 4 weeks in >80% of inbred athymic mice. Feeding mice dietary genistein before implantation led to blood concentrations similar to those measured in genistein-consuming men. Genistein decreased metastases by 96%, induced nuclear morphometric changes in PC3-M cells indicative of increased adhesion (i.e., decreased detachment) but did not alter tumor growth. Genistein increased tumor levels of FAK, p38 MAPK, and HSP27 ''promotility'' proteins. However, the ratio of phosphorylated to total protein trended downward, indicating a failure to increase relative amounts of activated protein. This study describes a murine model of human PCa metastasis well suited for testing antimetastatic drugs. It shows for the first time that dietary concentrations of genistein can inhibit PCa cell metastasis. Increases in promotility proteins support the notion of cellular compensatory responses to antimotility effects induced by therapy. Studies of antimetastatic efficacy in man are warranted and are under way.
We identified MEK4 as a proinvasion protein in six human prostate cancer cell lines and the target for genistein. We showed, to our knowledge for the first time, that genistein treatment, compared with no treatment, was associated with decreased levels of MMP-2 transcripts in normal prostate cells from prostate cancer-containing tissue.
BackgroundThe CRISPR-Cas9 system is a widely utilized platform for transgenic animal production in various species, although its off-target effects should be addressed. Several applications of this tool have been proposed in model animals but remain insufficient for transgenic livestock production.ResultsHere, we report the first application of single Cas9 nickase (Cas9n) to induce gene insertion at a selected locus in cattle. We identify the main binding sites of a catalytically inactive Cas9 (dCas9) protein in bovine fetal fibroblast cells (BFFs) with chromatin immunoprecipitation sequencing (ChIP-seq). Subsequently, we demonstrate that a single Cas9n-induced single-strand break can stimulate the insertion of the natural resistance-associated macrophage protein-1 (NRAMP1) gene with reduced, but still considerable, off-target effects. Through somatic cell nuclear transfer, we finally obtain transgenic cattle with increased resistance to tuberculosis.ConclusionsOur results contribute to the development of CRISPR-Cas9 system for agriculture applications.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1144-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.