Magnetic nanotags (MNTs) are a promising alternative to fluorescent labels in biomolecular detection assays, because minute quantities of MNTs can be detected with inexpensive giant magnetoresistive (GMR) sensors, such as spin valve (SV) sensors. However, translating this promise into easy to use and multilplexed protein assays, which are highly sought after in molecular diagnostics such as cancer diagnosis and treatment monitoring, has been challenging. Here, we demonstrate multiplex protein detection of potential cancer markers at subpicomolar concentration levels and with a dynamic range of more than four decades. With the addition of nanotag amplification, the analytic sensitivity extends into the low fM concentration range. The multianalyte ability, sensitivity, scalability, and ease of use of the MNT-based protein assay technology make it a strong contender for versatile and portable molecular diagnostics in both research and clinical settings.A consensus is emerging that early detection and personalized treatment in clinics based on genetic and proteomic profiles of perhaps 4-20 biomarkers are the key to improving the survival rate of patients with complex diseases, such as cancer, autoimmune disorders, infectious diseases, and cardiovascular diseases (1-3). Although the tools for large-scale biomarker discovery with hundreds to thousands of biomarkers are available, there are few biomolecular detection tools capable of multiplex and sensitive detection of protein biomarkers that can be readily adopted in clinical settings for biomarker validation and for personalized diagnosis and treatment. This need, we believe, can be fulfilled by the magnetic nanotag (MNT)-based biomolecular assay technology reported here. We demonstrate the feasibility and implementation of this technology with multiple potential cancer markers.Several research groups are investigating MNT (4-6)-based analyte quantification as a highly sensitive alternative to optical biosensors and biochips (7-10). By labeling the target analyte of interest with MNTs (see Fig. 1), analyte detection and quantification can occur when the analyte binds to capture probes on the surface of giant magnetoresistive (GMR) sensors (11-15) such as spin valve (SV) sensors (16), which have been developed and optimized for use in hard disk drives on a scale of hundreds of millions of units annually with great economy and reliability. Such sensors, when modified for use in biological applications, were previously shown to be capable of detecting as few as 10 MNTs (13, 16). ResultsGiven the recent efforts to develop methods for early cancer detection via quantification of cancer-related cytokines, we chose the following analytes for our MNT-based protein assays: cancer embryonic antigen (CEA), eotaxin, granulocyte colonystimulating factor (G-CSF), interleukin-1-alpha (IL-1␣), interleukin-10 (IL-10), IFN gamma (IFN-␥), lactoferrin, and tumor necrosis factor alpha (TNF-␣). Fig. 1 outlines the detection scheme in which analyte is captured on the sensor surface and qu...
Monitoring the kinetics of protein interactions on a high density sensor array is vital to drug development and proteomic analysis. Label-free kinetic assays based on surface plasmon resonance are the current gold standard, but they have poor detection limits, suffer from non-specific binding, and are not amenable to high throughput analyses. Here we show that magnetically responsive nanosensors that have been scaled to over 100,000 sensors/cm2 can be used to measure the binding kinetics of various proteins with high spatial and temporal resolution. We present an analytical model that describes the binding of magnetically labeled antibodies to proteins that are immobilized on the sensor surface. This model is able to quantify the kinetics of antibody-antigen binding at sensitivities as low as 20 zeptomoles of solute.
A giant magnetoresistive (GMR) biochip based on spin valve sensor array and magnetic nanoparticle labels was developed for inexpensive, sensitive and reliable DNA detection. The DNA targets detected in this experiment were PCR products amplified from Human Papillomavirus (HPV) plasmids. The concentrations of the target DNA after PCR were around 10 nM in most cases, but concentrations of 10 pM were also detectable, which is demonstrated by experiments with artificial DNA samples. A mild but highly specific surface chemistry was used for probe oligonucleotide immobilization. Double modulation technique was used for signal detection in order to reduce the 1/f noise in the sensor. Twelve assays were performed with an accuracy of approximately 90%. Magnetic signals were consistent with particle coverage data measured with Scanning Electron Microscopy. More recent research on microfluidics showed the potential of reducing the assay time below one hour. This is the first demonstration of magnetic DNA detection using plasmid-derived samples. This study provides a direct proof that GMR sensors can be used for biomedical applications.
Interest in highly parallelized analysis of single molecules and single cells is growing rapidly. Here we develop hydrogel-based virtual microfluidics as a simple alternative to complex engineered microfluidic systems for the compartmentalization of nucleic acid amplification reactions. We applied digital multiple displacement amplification (dMDA) to purified DNA templates, cultured bacterial cells, and human microbiome samples in the virtual microfluidics system and demonstrated recovery and whole-genome sequencing of single-cell MDA products. Our results from control samples showed excellent coverage uniformity and markedly reduced chimerism compared with single-cell data obtained from conventional liquid MDA reactions. We also demonstrate the applicability of the hydrogel method for genomic studies of naturally occurring microbes in human microbiome samples. The virtual microfluidics approach is a simple and robust method that will enable many laboratories to perform single-cell genomic analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.