Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This paper proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.