Vision-language pre-training has been an emerging and fast-developing research topic, which transfers multi-modal knowledge from rich-resource pre-training task to limited-resource downstream tasks. Unlike existing works that predominantly learn a single generic encoder, we present a pre-trainable Universal Encoder-DEcoder Network (Uni-EDEN) to facilitate both vision-language perception (e.g., visual question answering) and generation (e.g., image captioning). Uni-EDEN is a two-stream Transformer-based structure, consisting of three modules: object and sentence encoders that separately learns the representations of each modality and sentence decoder that enables both multi-modal reasoning and sentence generation via inter-modal interaction. Considering that the linguistic representations of each image can span different granularities in this hierarchy including, from simple to comprehensive, individual label, a phrase, and a natural sentence, we pre-train Uni-EDEN through multi-granular vision-language proxy tasks: Masked Object Classification, Masked Region Phrase Generation, Image-Sentence Matching, and Masked Sentence Generation. In this way, Uni-EDEN is endowed with the power of both multi-modal representation extraction and language modeling. Extensive experiments demonstrate the compelling generalizability of Uni-EDEN by fine-tuning it to four vision-language perception and generation downstream tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.