Variations in the gene encoding the novel protein dysbindin-1 (DTNBP1) are among the most commonly reported genetic variations associated with schizophrenia. Recent studies show that those variations are also associated with cognitive functioning in carriers with and without psychiatric diagnoses, suggesting a general role for dysbindin-1 in cognition. Such a role could stem from the protein's known ability to affect neuronal glutamate release. How dysbindin-1 might affect glutamate release nevertheless remains unknown without the discovery of the protein's neuronal binding partners and its subcellular locus of action. We demonstrate here that snapin is a binding partner of dysbindin-1 in vitro and in the brain. Tissue fractionation of whole mouse brains and human hippocampal formations revealed that both dysbindin-1 and snapin are concentrated in tissue enriched in synaptic vesicle membranes and less commonly in postsynaptic densities. It is not detected in presynaptic tissue fractions lacking synaptic vesicles. Consistent with that finding, immunoelectron microscopy showed that dysbindin-1 is located in (i) synaptic vesicles of axospinous terminals in the dentate gyrus inner molecular layer and CA1 stratum radiatum and in (ii) postsynaptic densities and microtubules of dentate hilus neurons and CA1 pyramidal cells. The labeled synapses are often asymmetric with thick postsynaptic densities suggestive of glutamatergic synapses, which are likely to be derived from dentate mossy cells and CA3 pyramidal cells. The function of dysbindin-1 in presynaptic, postsynaptic and microtubule locations may all be related to known functions of snapin.
Neuronal insulin signaling abnormalities have been associated with Alzheimer's disease (AD). However, the specificity of this association and its underlying mechanisms have been unclear. This study investigated the expression of abnormal serine phosphorylation of insulin receptor substrate 1 (IRS1) in 157 human brain autopsy cases that included AD, tauopathies, α-synucleinopathies, TDP-43 proteinopathies, and normal aging. IRS1-pS616, IRS1-pS312 and downstream target Akt-pS473 measures were most elevated in AD but were also significantly increased in the tauopathies: Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Double immunofluorescence labeling showed frequent co-expression of IRS1-pS616 with pathologic tau in neurons and dystrophic neurites. To further investigate an association between tau and abnormal serine phosphorylation of IRS1, we examined the presence of abnormal IRS1-pS616 expression in pathological tau-expressing transgenic mice and demonstrated that abnormal IRS1-pS616 frequently co-localizes in tangle-bearing neurons. Conversely, we observed increased levels of hyperphosphorylated tau in the high-fat diet-fed mouse, a model of insulin resistance. These results provide confirmation and specificity that abnormal phosphorylation of IRS1 is a pathological feature of AD and other tauopathies, and provide support for an association between insulin resistance and abnormal tau as well as amyloid-β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.