Long noncoding RNAs (lncRNAs) have important roles in diverse biological processes. Our previous study has revealed that lncRNA-MALAT1 deregulation is implicated in the pathogenesis of diabetes-related microvascular disease, diabetic retinopathy (DR). However, the role of MALAT1 in retinal vasculature remodeling still remains elusive. Here we show that MALAT1 expression is significantly upregulated in the retinas of STZ-induced diabetic rats and db/db mice. MALAT1 knockdown could obviously ameliorate DR in vivo, as shown by pericyte loss, capillary degeneration, microvascular leakage, and retinal inflammation. Moreover, MALAT1 knockdown could regulate retinal endothelial cell proliferation, migration, and tube formation in vitro. The crosstalk between MALAT1 and p38 MAPK signaling pathway is involved in the regulation of endothelial cell function. MALAT1 upregulation represents a critical pathogenic mechanism for diabetes-induced microvascular dysfunction. Inhibition of MALAT1 may serve as a potential target for anti-angiogenic therapy for diabetes-related microvascular complications.
The Asian venous thromboembolism (VTE) prophylaxis guidelines were first published in 2012. Since its first edition, the Asian Venous Thrombosis Forum (AVTF) working group have updated the Asian VTE epidemiology and reviewed issues that were not addressed in the previous guidelines. The authors noted that the rising incidence of VTE across Asia may be attributable to aging population, dietary changes, and increasing incidence of obesity and diabetes. The new additions in the guideline include role of thrombophilia in VTE, bleeding risk in Asians, individual risk assessment, updates in the prevention of VTE in medically ill, bariatric surgery, cancer, orthopedic and trauma patients. The influence of primary thrombophilia in perioperative VTE is still unclear. The secondary risk factors, however, are similar between Asians and Caucasians. The group found no evidence of increased risk of bleeding while using pharmacological agents, including the use of novel anti-coagulants. At present, Caprini risk assessment model is widely used for individual risk assessment. Further validation of this model is needed in Asia. In medically ill patients, pharmacological agents are preferred if there is no bleeding risk. Intermittent pneumatic compression device (IPC) is recommended in patients with bleeding risk but we do not recommend using graduated compressive stockings. In bariatric patients, data on VTE is lacking in Asia. We recommend following current international guidelines. A high index of suspicion should be maintained during postbariatric surgery to detect and promptly treat portomesenteric venous thrombosis. Different cancer types have different thrombotic risks and the types of surgery influence to a large extent the overall VTE risk. Cancer patients should receive further risk assessment. In patients with higher thrombotic risk, either due to predisposing risk or concomitant surgery, low molecular weight heparin is indicated. Different countries appear to have different incidence of VTE following trauma and major orthopedic surgery. We recommend mechanical prophylaxis using IPC as the main method and additional pharmacological prophylaxis if the thrombotic risk is high. As for obstetric practice, we propose adherence to the UK Greentop guideline that is widely accepted and utilized across Asia. To improve VTE thromboprophylaxis implementation in the region, we propose that there should be better health education, establishment of hospital-based guidelines and multidisciplinary collaboration.
The Ets transcription factor, Fli-1 is activated in murine erythroleukemia and overexpressed in various human malignancies including Ewing's sarcoma, induced by the oncogenic fusion protein EWS/Fli-1. Recent studies by our group and others have demonstrated that Fli-1 plays a key role in tumorigenesis, and disrupting its oncogenic function may serve as a potential treatment option for malignancies associated with its overexpression. Herein, we describe the discovery of 30 anti-Fli-1 compounds, characterized into six functional groups. Treatment of murine and human leukemic cell lines with select compounds inhibits Fli-1 protein or mRNA expression, resulting in proliferation arrest and apoptosis. This anti-cancer effect was mediated, at least in part through direct inhibition of Fli-1 function, as anti-Fli-1 drug treatment inhibited Fli-1 DNA binding to target genes, such as SHIP-1 and gata-1, governing hematopoietic differentiation and proliferation. Furthermore, treatment with select Fli-1 inhibitors revealed a positive relationship between the loss of DNA-binding activity and Fli-1 phosphorylation. Accordingly, anti-Fli-1 drug treatment significantly inhibited leukemogenesis in a murine erythroleukemia model overexpressing Fli-1. This study demonstrates the ability of this drug-screening strategy to isolate effective anti-Fli-1 inhibitors and highlights their potential use for the treatment of malignancies overexpressing this oncogene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.