The jumper wires of an extra-high voltage (EHV) transmission line in strong-wind areas in Northwest China frequently break down. We installed some acquisition devices to collect the data of the jumper wires and wind speed in the fault area of one 750-kV transmission line. We also developed a swing simulation machine based on the collected data. The machine could simulate the swing condition of the jumper wires under various wind speeds. We analyzed the broken aluminum wires obtained from the simulation experiment of jumper wires. Yield lines appeared on the surface of the broken aluminum wires in the simulation experiment. Proliferation of dislocation and grain deformation occurred in the broken aluminum wires using transmission electron microscopy observation. The results show that the aluminum wires in the experiment under a Level-6 wind and above were in a full yield state and demonstrated strain-fatigue failure condition. The fracture of the broken aluminum wires showed distinct strain-fatigue fracture characteristics using the scanning electron microscope fracture morphology analysis. From the combination of the abovementioned research, we conclude that the failure mechanism of the broken strands of the jumper wires of the EHV transmission line in the strong-wind area is mainly a strain-fatigue failure mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.