Diabetes mellitus has reached epidemic proportion worldwide. One of the diabetic complications is cardiomyopathy, characterized by early left ventricular (LV) diastolic dysfunction, followed by development of systolic dysfunction and ventricular dilation at a late stage. The pathogenesis is multifactorial, and there is no effective treatment yet. In recent years, 4-hydroxy-2-nonenal (4-HNE), a toxic aldehyde generated from lipid peroxidation, is implicated in the pathogenesis of cardiovascular diseases. Its high bioreactivity toward proteins results in cellular damage. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that detoxifies 4-HNE. The development of small-molecule ALDH2 activator provides an opportunity for treating diabetic cardiomyopathy. This study found that AD-9308, a water-soluble andhighly selective ALDH2 activator, can improve LV diastolic and systolic functions, and wall remodeling in streptozotocin-induced diabetic mice. AD-9308 treatment dose-dependently lowered serum 4-HNE levels and 4-HNE protein adducts in cardiac tissue from diabetic mice, accompanied with ameliorated myocardial fibrosis, inflammation, and apoptosis. Improvements of mitochondrial functions, sarco/endoplasmic reticulumcalcium handling and autophagy regulation were also observed in diabetic mice with AD-9308 treatment. In conclusion, ADLH2 activation effectively ameliorated diabetic cardiomyopathy, which may be mediated through detoxification of 4-HNE. Our findings highlighted the therapeutic potential of ALDH2 activation for treating diabetic cardiomyopathy.
Obesity and type 2 diabetes have reached pandemic proportion. In particular, the population with diabetes is expected to rise rapidly in East and South Asia. ALDH2 (acetaldehyde dehydrogenase 2, mitochondrial) is the key metabolizing enzyme of acetaldehyde and other toxic aldehydes, such as 4-hydroxynonenal (4-HNE). A missense mutation, Glu504Lys of ALDH2 (denoted as the ALDH2*2 allele) is prevalent in 560 million East Asians, resulting in reduced ALDH2 enzymatic activity. We found that Aldh2*2/*2 homozygous knock-in (KI) mice mimicking human Glu504Lys mutation were prone to develop diet-induced obesity, glucose intolerance, insulin resistance, and fatty liver on a high-fat high-sucrose diet compared with controls. The Aldh2 KI mice demonstrated reduced energy expenditure and thermogenesis. Proteomic analyses of the brown adipose tissue (BAT) of the Aldh2 KI mice identified increased 4-HNE-adducted proteins involved in fatty acid oxidation and electron transport chain. Fatty acid oxidation rate and mitochondrial electron transport activity were reduced in the BAT of the Aldh2 KI mice, which explained the decrease in thermogenesis and energy expenditure. AD-9308 is a water-soluble prodrug of a potent and highly selective ALDH2 activator AD-5591. In vitro, AD-5591 enhanced both WT and mutant ALDH2 enzymatic activities. AD-9308 allosterically activates ALDH2 mainly by partially blocking the substrate exit tunnel, thereby accelerating the substrate-enzyme collision. In vivo, AD-9308 treatment reduced serum 4-HNE levels, ameliorated diet-induced obesity and fatty liver, and improved glucose homeostasis in both Aldh2 WT and KI mice dose-dependently. Our data highlight the therapeutic potential of reducing toxic aldehyde levels by activating ALDH2 for treating metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.