Recently, the introduction of the magnetic field has opened a new and exciting avenue for achieving high-performance electrochemical energy storage (EES) devices. The employment of the magnetic field, providing a noncontact energy, is able to exhibit outstanding advantages that are reflected in inducing the interaction between materials on the molecular scale, driving chemical transport to change the phase structure of electrode materials, constructing hierarchical or well-ordered nanostructure of electrodes, rearranging the electronic/ionic distribution and transport in the electrode/electrolyte interface, and so on. In this review, we aim to introduce the effects of the magnetic field on EES by summarizing the recent progress of mainly two disciplines: the application of the magnetic field in the electrochemical performance regulation and the fabrication of components in EES devices. The theoretical principle and influencing mechanisms of the magnetic field are also analyzed and elaborated in detail. In addition, the challenges and perspectives for future applications of the magnetic field in EES techniques are highlighted. This review is expected to shed light on the exploitation and rational design of advanced EES devices by taking advantage of the magnetic field regulation technique.
Due to their superior theoretical specific capacity and energy density, lithium-sulfur (L‒S) batteries are gaining popularity in order to achieve the growing terms for more power generation. However, drawbacks such as low electrical conductivity of the active ingredient sulfur, severe volume expansion and shuttle effect of polysulfides, rapidly decaying battery capacity, and short battery life have hampered their development. A MoWS2@MXene@CNT composite material is used as the main cathode material for L-S batteries in this study. MoWS2 can improve the electrochemical reaction rate by accelerating polysulfide conversion, whereas MXene can suppress electrode volume expansion. Furthermore, the addition of carbon nanotubes (CNT) with high electrical conductivity improves the rate of the electrochemical reaction. Therefore, the MoWS2@MXene@CNT composites have good capacity and versatility as cathode materials and enhance the behavior of L-S batteries.
The solvation of cations is one of the important factors that determine the properties of electrolytes. Rational solvation structures can effectively improve the performance of various electrochemical energy storage devices...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.