Gear steel is a ferritic steel. In the rolling process, the ideal structure is ferrite + pearlite, and bainite or martensite is not expected. However, due to the high alloy content, the hardenability is good, and the bainite or martensite structure is very likely to be generated upon cooling after rolling. In this paper, phase transformation rules during continuous cooling of 20CrMnTi with and without deformation were studied to guide the avoidance of the appearance of bainite or martensite in steel. A combined method of dilatometry and metallography was adopted in the experiments, and the dilatometer DIL805A and thermo-simulation Gleeble3500 were used. Both dynamic and static continuous cooling transformation (CCT) diagrams were drawn by using the software Origin. The causes of those changes in starting temperature, finishing temperature, starting time and transformation duration in ferrite-pearlite phase transformation were analyzed, and the change in Vickers hardness of samples with different cooling rate was discussed. The results indicate that with different cooling rate, there are three phase transformation zones: ferrite-pearlite, bainite and martensite. Deformation of austenite accelerates the occurrence of transformation obviously and moves CCT curve to left and up direction. When the cooling rate is lower than 1 °C/s, the phases in samples are mainly ferrite and pearlite, which is the ideal microstructure of experimental steel. As the cooling rate increases, starting temperature of ferrite transformation in steel decreases, starting time reduces, transformation duration gradually decreases, and the Vickers hardness of samples increases. Under the cooling rate of 0.5 °C/s, ferrite transformation in deformed sample starts at 751.67 °C, ferrite-pearlite phase transformation lasts 167.9 s, and Vickers hardness of sample is 183.4 HV.
The cause of drawing fracture of SWRH82B wire rods was analyzed by using optical microscopy, scanning electron microscope - energy dispersive spectrometer and electron probe micro-analyzer - wavelength dispersive spectrometer. A multivariate diffusion model was established in Thermo-Cale, and the effects of temperature and time on diffusion behavior of alloys were studied. Results show that cementite network and martensite in the center area of rod is main cause of tensile fracture. There is serious segregation of chromium and manganese in the central area. The CCT curve moves to right, and critical cooling rate of martensite decreases. With high cooling rate, time for eutectoid transition is insufficient, and martensite transformation occurs in segregation band. The segregation of phosphorus further worsen the brittleness of steel. With increase of heating temperature and duration of heating time, segregation in final product is reduced, and content of cementite network and martensite decreases. When the temperature is maintained at 1050 °C for 600 s, there is no segregation of phosphorus and carbon. The diffusion of chromium is even when temperature is maintained at 1150 °C for 5400 s, and an even diffusion of manganese is obtained when temperature is maintained at 1200 °C for 3000 s. In stelmor air cooling process, the key point is keeping cooling rate low to extend holding time, and to optimize microstructure and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.