Objective. The data scarcity problem in emotion recognition from electroencephalography (EEG) leads to difficulty in building an affective model with high accuracy using machine learning algorithms or deep neural networks. Inspired by emerging deep generative models, we propose three methods for augmenting EEG training data to enhance the performance of emotion recognition models. Approach. Our proposed methods are based on two deep generative models, variational autoencoder (VAE) and generative adversarial network (GAN), and two data augmentation ways, full and partial usage strategies. For the full usage strategy, all of the generated data are augmented to the training dataset without judging the quality of the generated data, while for the partial usage, only high-quality data are selected and appended to the training dataset. These three methods are called conditional Wasserstein GAN (cWGAN), selective VAE (sVAE), and selective WGAN (sWGAN). Main results. To evaluate the effectiveness of these proposed methods, we perform a systematic experimental study on two public EEG datasets for emotion recognition, namely, SEED and DEAP. We first generate realistic-like EEG training data in two forms: power spectral density and differential entropy. Then, we augment the original training datasets with a different number of generated realistic-like EEG data. Finally, we train support vector machines and deep neural networks with shortcut layers to build affective models using the original and augmented training datasets. The experimental results demonstrate that our proposed data augmentation methods based on generative models outperform the existing data augmentation approaches such as conditional VAE, Gaussian noise, and rotational data augmentation. We also observe that the number of generated data should be less than 10 times of the original training dataset to achieve the best performance. Significance. The augmented training datasets produced by our proposed sWGAN method significantly enhance the performance of EEG-based emotion recognition models.
Replacing the background and simultaneously adjusting foreground objects is a challenging task in image editing. Current techniques for generating such images are heavily relied on user interactions with image editing softwares, which is a tedious job for professional retouchers. Some exciting progress on image editing has been made to ease their workload. However, few models focused on guarantee the semantic consistency between the foreground and background. To solve this problem, we propose a framework -ART(Auto-Retoucher)to generate images with sufficient semantic and spatial consistency from a given image. Inputs are first processed by semantic matting and scene parsing modules, then a multi-task verifier model will give two confidence scores for the current matching and foreground location. We demonstrate that our jointly optimized verifier model successfully guides the foreground adjustment and improves the global visual consistency.
The data scarcity problem in emotion recognition from electroencephalography (EEG) leads to difficulty in building an affective model with high accuracy using machine learning algorithms or deep neural networks. Inspired by emerging deep generative models, we propose three methods for augmenting EEG training data to enhance the performance of emotion recognition models. Our proposed methods are based on two deep generative models, variational autoencoder (VAE) and generative adversarial network (GAN), and two data augmentation strategies. For the full usage strategy, all of the generated data are augmented to the training dataset without judging the quality of the generated data, while for partial usage, only highquality data are selected and appended to the training dataset. These three methods are called conditional Wasserstein GAN (cWGAN), selective VAE (sVAE), and selective WGAN (sWGAN). To evaluate the effectiveness of these methods, we perform a systematic experimental study on two public EEG datasets for emotion recognition, namely, SEED and DEAP. We first generate realistic-like EEG training data in two forms: power spectral density and differential entropy. Then, we augment the original training datasets with a different number of generated realisticlike EEG data. Finally, we train support vector machines and deep neural networks with shortcut layers to build affective models using the original and augmented training datasets. The experimental results demonstrate that the augmented training datasets produced by our methods enhance the performance of EEG-based emotion recognition models and outperform the existing data augmentation methods such as conditional VAE, Gaussian noise, and rotational data augmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.