Our study indicated that fractional CO(2) resulted in clinical improvement of mature burn scar. Alteration of types I and III procollagen, MMP-1, TGF-β2, -β3, bFGF, as well as miRNAs miR-18a and miR-19a expression may be responsible for the clinical improvement after treatment. Our finding may have implications for novel treatments and further our understanding of fractional CO(2) laser treatment.
The mammalian STE20-like protein kinase 1 (MST1)-MOB kinase activator 1 (MOB1) complex has been shown to suppress the oncogenic activity of Yes-associated protein (YAP) in the mammalian Hippo pathway, which is involved in the development of multiple tumors, including pancreatic cancer (PC). However, it remains unclear whether other MST-MOB complexes are also involved in regulating Hippo-YAP signaling and have potential roles in PC. Here, we report that mammalian STE20-like kinase 4 (MST4), a distantly related ortholog of the MST1 kinase, forms a complex with MOB4 in a phosphorylation-dependent manner. We found that the overall structure of the MST4-MOB4 complex resembles that of the MST1-MOB1 complex, even though the two complexes exhibited opposite biological functions in PC. In contrast to the tumor-suppressor effect of the MST1-MOB1 complex, the MST4-MOB4 complex promoted growth and migration of PANC-1 cells. Moreover, expression levels of MST4 and MOB4 were elevated in PC and were positively correlated with each other, whereas MST1 expression was down-regulated. Because of divergent evolution of key interface residues, MST4 and MOB4 could disrupt assembly of the MST1-MOB1 complex through alternative pairing and thereby increased YAP activity. Collectively, these findings identify the MST4-MOB4 complex as a noncanonical regulator of the Hippo-YAP pathway with an oncogenic role in PC. Our findings highlight that although MST-MOB complexes display some structural conservation, they functionally diverged during their evolution.
Loss of Hippo tumor-suppressor activity and hyperactivation of YAP are commonly observed in cancers. Inactivating mutations of Hippo kinases MST1/2 are uncommon, and it remains unclear how their activity is turned off during tumorigenesis. We identified STRN3 as an essential regulatory subunit of protein phosphatase 2A (PP2A) that recruits MST1/2 and promotes its dephosphorylation, which results in YAP activation. We also identified STRN3 upregulation in gastric cancer correlated with YAP activation and poor prognosis. Based on this mechanistic understanding and aided by structure-guided medicinal chemistry, we developed a highly selective peptide inhibitor, STRN3-derived Hippo-activating peptide, or SHAP, which disrupts the STRN3-PP2Aa interaction and reactivates the Hippo tumor suppressor, inhibits YAP activation, and has antitumor effects in vivo.
ll
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.