Ceftazidime is a widely used β‐lactam antibiotic and almost entirely excreted via glomerular filtration in kidney. The objective of this analysis was to assess the ability of physiologically based pharmacokinetic (PBPK) model to predict ceftazidime exposure in healthy volunteers and subjects with renal impairment. A full PBPK model of ceftazidime was developed using physiochemical properties and clinical data. The total clearance of 115 mL/min and renal clearance of 100 mL/min were obtained from ceftazidime package insert. Healthy and chronic kidney disease (CKD) populations were applied for sampling of virtual subjects. The established PBPK model predicted mean plasma AUCinf were 138.5 ± 19.6, 230.7 ± 22.2, 369.3 ± 53.1 and 561.8 ± 92.4 h µg/mL in healthy, mild, moderate and severe renal impairment subjects, respectively, after administration of 1 g ceftazidime intravenous bolus dose. The predicted values were in close agreement with the weighted mean of the five reported clinical studies. The exposure was slightly under predicted in subjects with severely impaired renal function, but still within 1.5‐fold range. The concentration‐time profiles of ceftazidime were also well captured in healthy volunteers and subjects with renal impairment. The developed PBPK model along with systems pharmacokinetics (PK) (renal impaired populations) well predicted the ceftazidime exposure. PBPK models verified with clinical study in healthy volunteers could be potentially applied to predict PK and recommend dose adjustment for CKD patients.
A systematic approach applying CT-anatomic correlation with multiplanar CT scan reconstruction and monoplanar fluoroscopy during procedures can result in an efficient, and successful process for locating peripheral pulmonary lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.