The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are selfassembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.
Freestanding synaptic transistors are fabricated on solution-processed chitosan membranes. A short-term memory to long-term memory transition is observed due to proton-related electrochemical doping under repeated pulse stimulus. Moreover, freestanding artificial synaptic devices with multiple presynaptic inputs are investigated, and spiking logic operation and logic modulation are realized.
Emerging evidence indicates that C-reactive protein (CRP) has at least two conformationally distinct isoforms, i.e., pentameric CRP (pCRP) and monomeric CRP (mCRP or CRP subunit). Both CRP isoforms are proposed to play roles in inflammation and may participate in the pathogenesis of cardiovascular disease. However, the origin of mCRP in situ and the interplay between the two CRP isoforms under physiological/pathological circumstances remain elusive. Herein, by probing conformational alteration, neoepitope expression, and direct visualization using electron-microscopy, we have shown that calcium-dependent binding of pCRP to membranes, including liposomes and cell membranes, led to a rapid but partial structural change, producing molecules that express CRP subunit antigenicity but with retained native pentameric conformation. This hybrid molecule is herein termed mCRP(m). The formation of mCRP(m) was associated with significantly enhanced complement fixation. mCRP(m) can further detach from membrane to form the well-recognized mCRP isoform converted in solution (mCRP(s)) and exert potent stimulatory effects on endothelial cells. The membrane-induced pCRP dissociation not only provides a physiologically relevant scenario for mCRP formation but may represent an important mechanism for regulating CRP function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.