Glycosaminoglycans in normal and cyclosporin-induced gingival overgrowth were extracted by papain digestion and purified by Mono Q-FPLC chromatography. The purified glycosaminoglycans were analyzed by agarose gel electrophoresis and by the pattern of degradation products formed by chondroitin lyases on HPLC chromatography. Our results on the glycosaminoglycan composition showed presence of chondroitin 4- and 6-sulfate, dermatan sulfate, heparan sulfate and hyaluronic acid in both normal gingiva and cyclosporin-induced gingival overgrowth. The total and relative amounts of glycosaminoglycans were similar between normal and overgrown gingiva. This suggests that the glycosaminoglycan composition is not changed in cyclosporin-induced gingival overgrowth. Our present biochemical results conflict with histochemical and biosynthetic data previously reported by other groups. Those studies suggested that the affected tissues contained higher levels of glycosaminoglycans and that cyclosporin induced comparably high levels of these compounds in in vitro cultures of gingival fibroblasts. Therefore, these discrepant results suggest that a cyclosporin-induced increase on gingival glycosaminoglycans still remains an open question. The implications of these conflicting results are discussed.
Glycosaminoglycans are thought to accumulate in formative lesions like drug-induced gingival overgrowth. Recent evidences, however, suggest that the amounts of glycosaminoglycans are comparable in overgrown and healthy gingiva. Besides, alterations in the size distribution of glycosaminoglycan molecules isolated from phenytoin-induced overgrown samples have also been suggested. Therefore, we sought to determine possible differences in molecular size distribution of gingival glycosaminoglycans in other types of drug-induced overgrowths. Purified gingival glycosaminoglycans from healthy and cyclosporin- and nifedipine-induced overgrown gingival tissues were analyzed by agarose gel electrophoresis and their molecular-size distribution was evaluated by both gel filtration chromatography and polyacrylamide gel electrophoresis. Our results on the gingival glycosaminoglycan composition showed presence of chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronic acid in all types of gingival tissues examined. In addition, hyaluronic acid was predominantly of a large size eluting near to the void volume of a Superose-6 column, while the sulfated glycosaminoglycans were mainly composed of low molecular size glycosaminoglycans. Our results show no differences in the molecular-size distribution of hyaluronic acid and sulfated glycosaminoglycans among healthy and drug-induced overgrown gingival tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.