The regulation of hexose transport was studied in a human diploid fibroblast respiration-deficient cell strain (WG750). Transport of 2-deoxy-D-glucose (2-DG) was greater than sixfold higher compared with an in vivo age-matched normal cell strain (MCH55). In addition, 3-O-methylglucose transport and 14CO2 production were elevated in the mutant cell strain. Kinetic analysis revealed that the increased sugar transport in mutant cells was due to an average 5.7-fold increase in the 2-DG maximal transport rate, with no observed differences in the transport Michaelis constant for both normal and mutant cells. Also, the inhibitor constants for D-glucose inhibition of 2-DG transport were nearly identical for both cell types. Glucose deprivation led to a similar time-dependent increase in hexose transport in both cell strains. Serum refeeding of glucose-fed serum-deprived cultures led to a progressive increase in 2-DG transport in normal cells, whereas mutant cells displayed a time-delayed increase in 2-DG transport. Exposure to 67 and 670 nM insulin stimulated 2-DG transport on average 1.99 +/- 0.25- and 2.33 +/- 0.26-fold, respectively, over basal transport in the normal cells, whereas the mutant cells were significantly less sensitive to the stimulatory effects of the hormone. Insulin binding and amino acid transport (i.e., alpha-aminoisobutyric acid uptake) in the normal and mutant cells were not different. Data obtained using Western blot analysis showed that WG750 (mutant) cells expressed an increase (approximately 4-fold) in total cellular HepG2 (erythroid-brain) transporter protein compared with normal cells, thus reflecting the changes seen in hexose transport.(ABSTRACT TRUNCATED AT 250 WORDS)
In this report, we have characterized the upregulation of glucose transport in two different respiration-deficient fibroblast cell cultures. We have demonstrated that glucose transport increases in respiration-deficient cells as measured by 2 deoxy D-glucose transport and is readily observed in both the WG750 human and G14 Chinese hamster fibroblast respiration-deficient cell lines when compared with the MCH55 normal human and V79 parental Chinese hamster cell lines, respectively. Using subcellular fractionation techniques, the GLUT 1 glucose transporter was found located predominantly in the plasma membrane-enriched fraction of the human and hamster cell lines. In human cells, the expression of the GLUT 1 glucose transporter was elevated three-fold in the plasma membrane-enriched fraction of the WG750 respiration-deficient mutant cells. In the Chinese hamster cell lines, the respiration-deficient G14 cells exhibited no such GLUT 1 glucose transporter elevation in the plasma membrane-enriched fraction, yet expressed a >2-fold increase in glucose transport. Furthermore, the G14 cells had a similar content of GLUT 1 glucose transporter in the plasma membrane fraction when compared with the V79 parental cell line. Using Western blot analysis, the GLUT 1 glucose transporter in G14 cells exhibited a different mobility on a polyacrylamide gel when compared with the mobility of the GLUT 1 glucose transporter of the V79 cell line. This differential mobility of the glucose transporters in the hamster cells appeared to be related to glycosylation differences of the glucose transporters. Although normal human and hamster cell lines exhibited significant increases in insulin-stimulated sugar transport (P < 0.05), the two respective respiration-deficient cell lines exhibited no significant increases in insulin-stimulated sugar transport (P > 0.05). Additionally, the expression of the GLUT 1 mRNA in the human WG750 mutant cells was elevated when compared with GLUT 1 mRNA in normal cells. Insulin exposure significantly increased GLUT 1 mRNA in human cells (P < 0.05). No differences in the GLUT 1 mRNA were observed between both hamster cell lines. Thus, both respiration-deficient cell lines are insulin resistant (i.e., regarding their insulin-stimulated sugar transport). The respiration-deficient mutation results in an increased sugar transport in the human and hamster cells; however, the human cells adapt to the mutation by increasing their levels of GLUT 1 mRNA and eventually membrane-located glucose transporters. On the other hand, the hamster cells adapt by apparently modifying their glucose transporters' intrinsic activity via glycosylation. We feel that these cell systems can be effective models to study the multiple factors involved in sugar transport regulation in vertebrate cells.
Abstract. In this report, we have characterized the upregulation of glucose transport in two different respiration‐deficient fibroblast cell cultures. We have demonstrated that glucose transport increases in respiration‐deficient cells as measured by 2 deoxy D‐glucose transport and is readily observed in both the WG750 human and G14 Chinese hamster fibroblast respiration‐deficient cell lines when compared with the MCH55 normal human and V79 parental Chinese hamster cell lines, respectively. Using subcellular fractionation techniques, the GLUT 1 glucose transporter was found located predominantly in the plasma membrane–enriched fraction of the human and hamster cell lines. In human cells, the expression of the GLUT 1 glucose transporter was elevated three‐fold in the plasma membrane–enriched fraction of the WG750 respiration‐deficient mutant cells. In the Chinese hamster cell lines, the respiration‐deficient G14 cells exhibited no such GLUT 1 glucose transporter elevation in the plasma membrane–enriched fraction, yet expressed a >2‐fold increase in glucose transport. Furthermore, the G14 cells had a similar content of GLUT 1 glucose transporter in the plasma membrane fraction when compared with the V79 parental cell line. Using Western blot analysis, the GLUT 1 glucose transporter in G14 cells exhibited a different mobility on a polyacrylamide gel when compared with the mobility of the GLUT 1 glucose transporter of the V79 cell line. This differential mobility of the glucose transporters in the hamster cells appeared to be related to glycosylation differences of the glucose transporters. Although normal human and hamster cell lines exhibited significant increases in insulin‐stimulated sugar transport (P < 0.05), the two respective respiration‐deficient cell lines exhibited no significant increases in insulin‐stimulated sugar transport (P > 0.05). Additionally, the expression of the GLUT 1 mRNA in the human WG750 mutant cells was elevated when compared with GLUT 1 mRNA in normal cells. Insulin exposure significantly increased GLUT 1 mRNA in human cells (P < 0.05). No differences in the GLUT 1 mRNA were observed between both hamster cell lines. Thus, both respiration‐deficient cell lines are insulin resistant (i.e., regarding their insulin‐stimulated sugar transport). The respiration‐deficient mutation results in an increased sugar transport in the human and hamster cells; however, the human cells adapt to the mutation by increasing their levels of GLUT 1 mRNA and eventually membrane‐located glucose transporters. On the other hand, the hamster cells adapt by apparently modifying their glucose transporters' intrinsic activity via glycosylation. We feel that these cell systems can be effective models to study the multiple factors involved in sugar transport regulation in vertebrate cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.