Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.
Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.
Podcasts - online distributed audio files - are easy access and production media, which can be used for Scientific Communication (SC) but few are presented in Portuguese. The objective of this work is to perform a case study with data from a survey for two Brazilian SC podcasts (Dragões de Garagem and Fronteiras da Ciência) to evaluate the increase of science podcast media in Brazil, the involved potential, their advantages, shortcomings, and perspectives. We noted an increase of listeners over the years, probably due to the internet popularization and the massive increase of mobile phones. Scientific content is underexplored, despite the great interest of the public. Humorous and informal podcasts are the most appealing to the public and they usually listen to them on informal educational sites. The majority of the public is from the South and Southeast regions, they are young male adults with undergraduate or graduate degrees. SC podcasts, despite their potential to communicate science, still have shortcomings to overcome. Nevertheless, independent initiatives can solve this difficulty, making possible for the media to reach a varied audience, affecting different groups that would not have interest in a specific content before, or even the access itself to the scientific knowledge.
<p>&#160;</p> <p>Recent studies have shown the release of methane (CH4) through the melting Greenland Ice Sheet, and have thus identified it to have an additional potential positive climate feedback. This CH4 is thought to originate from biologically active methanogenic ecosystems in subglacial sediments, where microbes produce it by converting overridden organic carbon to CH4, which then accumulates over time. Subsequent CH4 diffusion into the subglacial hydrologic network transports it then to the ice sheet margin, where it is directly emitted to the atmosphere from supersaturated proglacial streams. Methanogenesis is highly dependent on anoxic conditions, which are in turn determined by the seasonally evolving subglacial environment subject to episodic flooding and thereby recharging oxygenated waters from surface melting. The main biogeochemical and hydrological drivers influencing the rate of CH4 production, as well as the magnitude and timing of these subglacial CH4 fluxes remain largely unknown and therefore unconstrained. Addressing these unknowns is essential because CH4 is not only a powerful greenhouse gas, but also because its unaccounted release exacerbates the ongoing climate amplification in the Arctic. The lack of observational data is primarily due to the challenging conditions for accessing the subglacial environment and the shortage of direct measurements of CH4 production, consumption, and export from the Greenland Ice Sheet and the complex nature of the subglacial system. This invites the application of reaction-transport modelling tools in combination with observational data to fill these knowledge gaps by disentangling the complex processes and drivers, and eventually quantifying CH4 cycling processes in Greenland&#8217;s subglacial sediments and their impacts on the global CH4 cycle and climate change. However, such modelling tools do not currently exist.&#160;</p> <p>Here, we develop a coupled subglacial sediment-cavity-stream model to&#160; explore the potential of subglacial environments to produce and accumulate methane beneath the Greenland Ice shield. The model accounts for heterotrophic methane production, methane oxidation, as well as advective and diffusive methane transport.&#160;Current field data observations are used to initialize the model, but it will also be forced over a wide range of plausible conditions (i.e. organic matter availability and reactivity, sediment thickness, terminal electron acceptor availability) that have could be found&#160; beneath the Greenland Ice shield. The results of this large model ensemble does not only help identify the most important biogeochemical and hydrological drivers on methane production and accumulation in subglacial environments, but also allows to identify areas beneath the ice sheet that could produce and accumulate important quantities of methane.</p> <p>These new developments present the first step in the development of a new fully coupled hydrological-biogeochemical model for subglacial environments, which will inform upscaling efforts and guide future field work.</p> <p>&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.