Calafate (Berberis microphylla G. Forst) is a Patagonian barberry very rich in phenolic compounds. Our aim was to demonstrate, through in vitro models, that a comprehensive characterized calafate extract has a protective role against oxidative processes associated to cardiovascular disease development. Fifty-three phenolic compounds (17 of them not previously reported in calafate), were tentatively identified by Ultra-Liquid Chromatography with Diode Array Detector, coupled to Quadrupole-Time of Fly Mass Spectrometry (UHPLC-DAD-QTOF). Fatty acids profile and metals content were studied for the first time, by Gas Chromatography Mass Spectrometry (GC-MS) and Total X-ray Fluorescence (TXRF), respectively. Linolenic and linoleic acid, and Cu, Zn, and Mn were the main relevant compounds from these groups. The bioactivity of calafate extract associated to the cardiovascular protection was evaluated using Human Umbilical Vein Endothelial Cells (HUVECs) and human low density lipoproteins (LDL) to measure oxidative stress and lipid peroxidation. The results showed that calafate extract reduced intracellular Reactive Oxygen Species (ROS) production (51%) and completely inhibited LDL oxidation and malondialdehyde (MDA) formation. These findings demonstrated the potential of the relevant mix of compounds found in calafate extract on lipoperoxidation and suggest a promising protective effect for reducing the incidence of cardiovascular disease.
Polyphenols are bioactive substances that participate in the prevention of chronic illnesses. High content has been described in Berberis microphylla G. Forst (calafate), a wild berry extensively distributed in Chilean–Argentine Patagonia. We evaluated its beneficial effect through the study of mouse plasma metabolome changes after chronic consumption of this fruit. Characterized calafate extract was administered in water, for four months, to a group of mice fed with a high-fat diet and compared with a control diet. Metabolome changes were studied using UHPLC-DAD-QTOF-based untargeted metabolomics. The study was complemented by the analysis of protein biomarkers determined using Luminex technology, and quantification of OH radicals by electron paramagnetic resonance spectroscopy. Thirteen features were identified with a maximum annotation level-A, revealing an increase in succinic acid, activation of tricarboxylic acid and reduction of carnitine accumulation. Changes in plasma biomarkers were related to inflammation and cardiovascular disease, with changes in thrombomodulin (−24%), adiponectin (+68%), sE-selectin (−34%), sICAM-1 (−24%) and proMMP-9 (−31%) levels. The production of OH radicals in plasma was reduced after calafate intake (−17%), especially for the group fed with a high-fat diet. These changes could be associated with protection against atherosclerosis due to calafate consumption, which is discussed from a holistic and integrative point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.