Antisense peptide nucleic acids (PNAs) can specifically inhibit Escherichia coli gene expression and growth and hold promise as anti-infective agents and as tools for microbial functional genomics. Here we demonstrate that chemical modification improves the potency of standard PNAs. We show that 9- to 12-mer PNAs, especially when attached to the cell wall/membrane-active peptide KFFKFFKFFK, provide improvements in antisense potency in E. coli amounting to two orders of magnitude while retaining target specificity. Peptide-PNA conjugates targeted to ribosomal RNA (rRNA) and to messenger RNA (mRNA) encoding the essential fatty acid biosynthesis protein Acp prevented cell growth. The anti-acpP PNA at 2 microM concentration cured HeLa cell cultures noninvasively infected with E. coli K12 without any apparent toxicity to the human cells. These results indicate that peptides can be used to carry antisense PNA agents into bacteria. Such peptide-PNA conjugates open exciting possibilities for anti-infective drug development and provide new tools for microbial genetics.
Insufficient efficacy and͞or specificity of antisense oligonucleotides limit their in vivo usefulness. We demonstrate here that a highaffinity DNA analog, locked nucleic acid (LNA), confers several desired properties to antisense agents. Unlike DNA, LNA͞DNA copolymers were not degraded readily in blood serum and cell extracts. However, like DNA, the LNA͞DNA copolymers were capable of activating RNase H, an important antisense mechanism of action. In contrast to phosphorothioate-containing oligonucleotides, isosequential LNA analogs did not cause detectable toxic reactions in rat brain. LNA͞DNA copolymers exhibited potent antisense activity on assay systems as disparate as a G-protein-coupled receptor in living rat brain and an Escherichia coli reporter gene. LNA-containing oligonucleotides will likely be useful for many antisense applications.A ntisense oligonucleotides designed according to straightforward base-pairing rules have been useful in functional genomics efforts, and there also has been recent clinical progress in developing antisense drugs (1-5). The key objective in the field, however, remains the identification of oligonucleotide analogs that provide the possibility to achieve high in vivo efficacy in the absence of significant toxicity (1-3).To date, all human antisense studies, as well as the vast majority of studies on other species, have relied on the use of phosphorothioate DNA analogs (where one nonbridging phosphate oxygen has been replaced). Although phosphorothioates are markedly more resistant to degrading enzymes than DNA, their DNA-binding capacity (relating to potency when used as antisense agents) is low, and they are well known to cause nonspecific protein binding, largely because of their polyanionic nature. The latter phenomenon contributes to a toxicity profile that limits many applications (6, 7). For example, when injected into the brain, phosphorothioates can cause severe tissue damage, especially with repeated or prolonged administration schedules (7,8). Such phosphorothioate-induced toxic reactions are thought to be reduced but not absent in second-generation antisense agents, like mixed backbone oligonucleotides (containing phosphorothioates in combination with oligodeoxyribonucleotides or oligoribonucleotides) (9).Interestingly, conformational restriction has been successfully applied in recent years to the design of high-affinity oligonucleotides. Several analogs containing bi-and tricyclic carbohydrate moieties have displayed enhanced duplex stability (10-20) and most notably so locked nucleic acids (LNA) (Fig. 1). LNA induces unprecedented increases in the thermal stability (melting temperature, T m ) of duplexes toward complementary DNA and RNA (⌬T m ͞LNA monomer ϭ ϩ 3 to ϩ 11°C compared with the corresponding DNA reference). By virtue of their bicyclic structure, the furanose ring of the LNA monomers is locked in a 3Ј-endo conformation, thus structurally mimicking the standard RNA monomers. Moreover, LNA͞LNA duplex formation has been shown to constitute the most stable...
To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.