The mouse gustatory cortex (GC) is involved in taste-guided decision-making in addition to sensory processing. Rodent GC exhibits metastable neural dynamics during ongoing and stimulus-evoked activity, but how these dynamics evolve in the context of a taste-based decision-making task remains unclear. Here we employ analytical and modeling approaches to i) extract metastable dynamics in ensemble spiking activity recorded from the GC of mice performing a perceptual decision-making task; ii) investigate the computational mechanisms underlying GC metastability in this task; and iii) establish a relationship between GC dynamics and behavioral performance. Our results show that activity in GC during perceptual decision-making is metastable and that this metastability may serve as a substrate for sequentially encoding sensory, abstract cue, and decision information over time. Perturbations of the model’s metastable dynamics indicate that boosting inhibition in different coding epochs differentially impacts network performance, explaining a counterintuitive effect of GC optogenetic silencing on mouse behavior.
The mouse gustatory cortex (GC) is involved in taste-guided decision-making in addition to sensory processing. Rodent GC exhibits metastable neural dynamics during ongoing and stimulus-evoked activity, but how these dynamics evolve in the context of a taste-based decision-making task remains unclear. Here we employ analytical and modeling approaches to i) extract metastable dynamics in ensemble spiking activity recorded from the GC of mice performing a perceptual decision-making task; ii) investigate the computational mechanisms underlying GC metastability in this task; and iii) establish a relationship between GC dynamics and behavioral performance. Our results show that activity in GC during perceptual decision-making is metastable and that this metastability may serve as a substrate for sequentially encoding sensory, abstract cue, and decision information over time. Perturbations of the model's metastable dynamics indicate that boosting inhibition in different coding epochs differentially impacts network performance, explaining a counterintuitive effect of GC optogenetic silencing on mouse behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.