Swarms of autonomous devices are increasing in ubiquity and size, making the need for rethinking their hardwaresoftware system stack critical.We present HiveMind, the first swarm coordination platform that enables programmable execution of complex task workflows between cloud and edge resources in a performant and scalable manner. HiveMind is a software-hardware platform that includes a domain-specific language to simplify programmability of cloud-edge applications, a program synthesis tool to automatically explore task placement strategies, a centralized controller that leverages serverless computing to elastically scale cloud resources, and a reconfigurable hardware acceleration fabric for network and remote memory accesses.We design and build the full end-to-end HiveMind system on two real edge swarms comprised of drones and robotic cars. We quantify the opportunities and challenges serverless introduces to edge applications, as well as the trade-offs between centralized and distributed coordination. We show that Hive-Mind achieves significantly better performance predictability and battery efficiency compared to existing centralized and decentralized platforms, while also incurring lower network traffic. Using both real systems and a validated simulator we show that HiveMind can scale to thousands of edge devices without sacrificing performance or efficiency, demonstrating that centralized platforms can be both scalable and performant.
Swarms of autonomous devices are increasing in ubiquity and size, making the need for rethinking their hardware-software system stack critical.We present HiveMind, the first swarm coordination platform that enables programmable execution of complex task workflows between cloud and edge resources in a performant and scalable manner. HiveMind is a software-hardware platform that includes a domain-specific language to simplify programmability of cloudedge applications, a program synthesis tool to automatically explore task placement strategies, a centralized controller that leverages serverless computing to elastically scale cloud resources, and a reconfigurable hardware acceleration fabric for network and remote memory accesses.We design and build the full end-to-end HiveMind system on two real edge swarms comprised of drones and robotic cars. We quantify the opportunities and challenges serverless introduces to edge applications, as well as the trade-offs between centralized and distributed coordination. We show that HiveMind achieves significantly better performance predictability and battery efficiency compared to existing centralized and decentralized platforms, while also incurring lower network traffic. Using both real systems and a validated simulator we show that HiveMind can scale to thousands of edge devices without sacrificing performance or efficiency, demonstrating that centralized platforms can be both scalable and performant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.