Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.
Chlorine-induced corrosion of HVAF-sprayed Ni21Cr and Ni5Al coatings was investigated in 5 vol.% O2 + 500vppm HCl + N2 with and without KCl at 600°C up to 168 h. Both coatings were protective in the absence of KCl. With KCl, Ni21Cr degraded through a two-stage mechanism: 1) formation of K2CrO4 followed by diffusion of Clthrough the oxide grain boundaries to yield chlorine and a nonprotective oxide, and 2) inward diffusion of chlorine though defects in the non-protective oxide, leading to breakaway oxidation. Cl-/Cl2 could not diffuse through the protective alumina scale formed on Ni5Al, hence the corrosion resistance increased.
The oxidation performance of NiCrAlY and NiCrMo coatings thermally sprayed by high velocity airfuel (HVAF) technique has been investigated in a chloridizing-oxidizing environment, with and without a KCl deposit, at 600 °C for up to 168 h. Both coatings protected the substrate in the absence of KCl due to formation of a dense Cr-rich oxide scale. In the presence of KCl, Cl -/Cl2 diffused through a nonprotective and porous NiCr2O4 scale formed on NiCrAlY, leading to formation of volatile CrCl3. On the other hand, Mo in NiCrMo stimulated the formation of a more protective Cr-rich oxide scale which increased the corrosion resistance by reducing Cl -/Cl2 diffusion.
A B S T R A C TAlumina-forming β-NiAl coatings were deposited by high velocity oxy-fuel (HVOF) thermal spraying onto 304 stainless steels for protection against chlorine induced corrosion in a biomass-fired boiler. The corrosion test was conducted in a synthetic gas containing 500 ppm HCl with 10 wt% KCl ash deposit at 700°C for 250 h. Severe corrosion was observed with the fast growing alumina at the coating/substrate interface initiating from sample edges. Possible corrosion mechanism was proposed: as supplied by HCl/KCl, the formation of volatile chlorine/chloride acted as a catalyst and promoted the growth of alumina at relatively lower application temperatures (< 900°C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.