Among the perovskites used to catalyze the oxygen evolution reaction (OER), Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) exhibits excellent activity which is thought to be related to dynamic reconstruction at the flexible perovskite surface due to accommodation of large amount of oxygen vacancies. By studying the local structure and chemistry of BSCF surfaces, in detail, via a range of transmission electron microscopy (TEM) methods, we show that the surfaces of the as-synthesized BSCF particles are Co/Fe rich, and remarkably, adopt a spinel-like structure with a reduced valence of Co ions. Post-mortem and identical location TEM analyses reveal that the Co/Fe spinel-like surface retains a stable chemical environment of the Co/Fe ions, although its structure weakens after electrochemical processing. Further, it is verified that prior to the onset of OER, the Co/Fe spinel-like surface promotes the formation of the highly active Co(Fe)OOH phase, which enhances the OER electrocatalytic properties of the underlying conductive BSCF perovskite. This study provides a detailed understanding of the fundamental transformations that oxide catalysts undergo during electrochemical processes and can aid in the development of novel oxide catalysts with enhanced activity.
The surface wettability of catalysts is typically controlled via surface treatments that promote catalytic performance. Here we report on potential-regulated hydrophobicity/hydrophilicity at cobalt-based oxide interfaces with an alkaline solution. The switchable wetting of single particles, directly related to their activity and stability towards the oxygen evolution reaction, was revealed by electrochemical liquid-phase transmission electron microscopy. Analysis of the movement of the liquid in real time revealed distinctive wettability behaviour associated with specific potential ranges. At low potentials, an overall reduction of the hydrophobicity of the oxides was probed. Upon reversible reconstruction towards the surface oxyhydroxide phase, electrowetting was found to cause a change in the interfacial capacitance. At high potentials, the evolution of molecular oxygen, confirmed by operando electron energy-loss spectroscopy, was accompanied by a globally thinner liquid layer. This work directly links the physical wetting with the chemical oxygen evolution reaction of single particles, providing fundamental insights into solid–liquid interfacial interactions of oxygen-evolving oxides.
Perovskites have been widely studied for electrocatalysis due to the exceptional activity they exhibit for surface-mediated redox reactions. To date, descriptors based on density functional theory calculations or experimental measurements have assumed a bulk-like configuration for the surfaces of these oxides. Herein, we probed an initial exposed surface and the screened subsurface of LaMnO 3 particles, demonstrating that their augmented activity toward the oxygen reduction reaction (ORR) can be related to a spontaneous surface reconstruction. Our approach involves high energy resolution electron energy loss spectroscopy for the fine structure probing of oxygen and manganese ionization edges under electron beam conditions that leave the structure unaffected. Atomic multiplet and density functional theory calculations were used to compute the theoretical energy loss spectra for comparison to the experimental data, allowing to quantitatively demonstrate that the particle surface layers are La-deficient. This deficiency is linked to equivalent tetrahedral Mn 2+ sites at the reconstructed surface, leading to the coexistence of +3 and +2 oxidation states of Mn at the surface layers. This electronic and structural configuration of the as-synthesized particles is indirectly linked to strong adsorption pathways that promote the ORR on LaMnO 3 , and thus, it could prove to be a valuable design feature in the engineering of catalytic surfaces.
Silicon supplementation has been shown to play an important role in skeleton development, however, the 5 potential role that silicon plays in mediating bone formation, and an understanding of where it might localise in the resulting bone tissue remain elusive. An improved understanding of these processes could have important implications for treating pathological mineralisation. A key aspect of defining the role of silicon in bone is to characterise its distribution and coordination environment, however, there is currently almost no information available on either. We have combined a sample-preparation method that 10 simultaneously preserved mineral, ions, and the extracellular matrix (ECM) with secondary ion mass spectroscopy (SIMS) and electron energy-loss spectroscopy (EELS) to examine the distribution and coordination environment of silicon in murine osteoblasts (OBs) in an in vitro model of bone formation. SIMS analysis showed a high level of surface contamination from polydimethysiloxane (PDMS) resulting from sample preparation. When the PDMS was removed, silicon compounds could not be detected within 15 the nodules either by SIMS or by energy dispersive x-ray spectroscopy (EDX) analysis. In comparison, electron energy-loss spectroscopy (EELS) provided a powerful and potentially widely applicable means to define the coordination environment and localisation of silicon mineralising tissues. We show that trace levels of silicon were only detectable from the mineral deposits of the mineralised nodules. Taken together our results suggest that silicon plays a biological role in bone formation, however, the 20 mechanism by which silicon exerts its physicochemical effects remains uncertain. Our analytical results open the door for compelling new sets of EELS experiments that can provide detailed and specific information about the role that silicates play in bone formation and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.