During the completion phase of an unconventional well in Turkey, casing deformation represented a challenge to the operator and Coiled Tubing (CT) service provider due to the potential loss of almost 70% of the horizontal section. The deformation obstructed the path to continue the milling the remaining plugs. The implementation of bicentric mills and Multi-Cycling Circulation Valve (MCCV) incorporated in the milling assembly allowed efficient recovery of the horizontal section. The tubing condition analysis done by the engineering team showed that symmetric mills would not be beneficial. Conformance tubing was not an option. Bicentric milling approach was deemed the most viable solution. This approach consists of using offset mills where rotation causes the cutting head to cover an area larger than the mill's frontal face. However, this approach could lead the CT pipe getting stuck due to big junk left. The use of a MCCV, limiting the number of milled plugs, and performing a fishing run between milling runs were key to the success of the bicentric milling approach. The Turkish well was completed with ten stages isolated by nine aluminum plugs. During the fracturing of stage seven, an abnormal pressure drop was observed while keeping the same pump rate, indicating possible casing damage. After all the stages were fractured, the CT proceeded to mill the plugs using a 4.63-in Outside Diameter (OD) mill. After three plugs were milled, an obstruction was detected, indicated by frequent aggressive motor stalls at the same depth. A tapered mill was run to perform a tubing conformance, and after several hours of unsuccessful penetration, the tool was recovered. At the surface, the tool showed signs of wear around 4.268 in. A 4.0-in OD mill was used to drift this section, and it passed free. An analysis of both the plug anatomy and the casing condition was done to determine the most viable solution. A 4-in OD bicentric mill was designed to pass across the restriction with an adjusted eccentricity to allow higher contact area. Three bicentric milling runs were made with the limit of a maximum of two plugs per run to avoid a CT stuck situation due to the larger cuttings as a result of the mill's asymmetry. The sparsity of information on using bicentric mills for plug milling required research into unpublished practices for such scenarios. This paper documents bicentric milling approach, the use of offset mills, and the mitigation measurements taken during this project to avoid a stuck situation due to large debris generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.