To facilitate more efficient winter maintenance decision support, road weather information systems (RWIS) have been widely used by highway agencies. However, the cost of RWIS stations is high, and they have limited monitoring coverage. To address this challenge, this paper presents an innovative framework that applies regression kriging to integrate stationary and mobile RWIS data to improve the accuracy of road surface temperature (RST) estimation. Furthermore, an optimal RWIS network expansion strategy is introduced by incorporating a modified particle swarm optimization method with the objective of minimizing spatially averaged kriging estimation errors. A sensitivity analysis is also conducted to investigate the influence of station densities on model performance. The case study from Alberta, Canada, demonstrates the feasibility and applicability of the proposed method. The findings provide insights for continuous monitoring and visualization of both road weather and surface conditions and for optimizing RWIS network planning.
Inclement weather acutely affects road surface and driving conditions and can negatively impact traffic mobility and safety. Highway authorities have long been using road weather information systems (RWISs) to mitigate the risk of adverse weather on traffic. The data gathered, processed, and disseminated by such systems can improve both the safety of the traveling public as well as the effectiveness of winter road maintenance operations. As the road authorities continue to invest in expanding their existing RWIS networks, there is a growing need to determine the optimal deployment strategies for RWISs. To meet such demand, this study presents an innovative geostatistical approach to quantitatively analyze the spatiotemporal variations of the road weather and surface conditions. With help of constructed semivariograms, this study quantifies and examines both the spatial and temporal coverage of RWIS data. A case study of Alberta, which is one of the leaders in Canada in the use of RWISs, was conducted to indicate the reliability and applicability of the method proposed herein. The findings of this research offer insight for constructing a detailed spatiotemporal RWIS database to manage and deploy different types of RWISs, optimize winter road maintenance resources, and provide timely information on inclement road weather conditions for the traveling public.
In winter, it is critical for cold regions to have a full understanding of the spatial variation of road surface conditions such that hot spots (e.g., black ice) can be identified for an effective mobilization of winter road maintenance operations. Acknowledging the limitations in present study, this paper proposes a systematic framework to estimate road surface temperature (RST) via the geographic information system (GIS). The proposed method uses a robust regression kriging method to take account for various geographical factors that may affect the variation of RST. A case study of highway segments in Alberta, Canada is used to demonstrate the feasibility and applicability of the method proposed herein. The findings of this study suggest that the geostatistical modelling framework proposed in this paper can accurately estimate RST with help of various covariates included in the model and further promote the possibility of continuous monitoring and visualization of road surface conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.