Salvianolic acid A (1) is one of the active components from Salvia miltiorrhiza, which was found to suppress the growth of mouse tumors. S-3-1 (a 2-allyl-3,4-dihydroxybenzaldehyde, 2) is a synthetic intermediate of a salvianolic acid A derivative with strong inhibitory effects on the growth of cancer cells in vitro. The inhibitory effects of 2 on tumor growth and its molecular targets were studied. 2 significantly suppressed the growth of mouse Lewis lung carcinoma, S180 sarcoma and H22 hepatic carcinoma in a dose-dependent manner. With a simple scrape-loading dye transfer method, 20 microg/ml of 2 was found to significantly enhance gap junction intercellular communication (GJIC) in human pancreatic adenocarcinoma PaCa Cells, human lung epithelial carcinoma W1-38 cells and human lung adenocarcinoma A549 cells, but 2 had no marked effect on GJIC in human colon cancer CACO2 cells. With Northern blot analysis, 2 was found to inhibit the expression of c-myc gene in A549 cells and have no marked effect on H-ras oncogene expression, and increase the cellular P53 mRNA contents, though it did not affect the expression of RB tumor suppressor gene. 2 also suppressed the P46 (JNK/SAPK) expression in A549 cells. Western blot analysis was applied to visualize the P21ras protein. Results shows that 2 at concentrations ranging from 10 to 20 microg/ml decreases the contents of the membranous P21ras and total P21ras and increases the contents of cytosolic P21ras protein in a time-dependent manner. However, 2 had no significant effects on farnesyl protein transferase activities at the concentrations that could efficiently decrease the membranous P21ras content. This suggested that 2 might suppress tumor growth partly through enhancement of GJIC and reversion of the transformed phenotypes. The other mechanisms may be that 2 can suppress the overexpression of c-myc oncogene, inhibit the function of Ras oncoprotein, increase the expression of P53 tumor suppressor gene and interrupt P46-associated mitogen-activated pathway other than farnesylation of Ras protein.
Salvia miltiorrhiza is a traditional Chinese medicine which has been well documented for its anti-cancer effects. Based on the structure of danshinone, one of the active compounds derived from Salvia miltiorrhiza, we synthesized a simplified phenolic analog, S-3-1, and tried to explore its possible actions in preventing the development of cancer. With the Ames test, S-3-1 was found to efficiently suppress the mutagenicity of benzo[alpha]pyrene. This result is consistent with the inhibitory effect of S-3-1 on the activation of benzo[alpha]pyrene by hepatic microsomal enzymes. Besides the anti-initiation effects, S-3-1 could significantly inhibit the croton oil-induced increase of mouse skin epithermal ornithine decarboxylase activity. Moreover, S-3-1 quenched both superoxide and hydroxyl free radicals whereas it inhibited lipid peroxidation in the in vitro model. These results suggest that S-3-1 might act as anti-initiation and anti-promotion agents through reversing the biochemical alterations induced by carcinogen during carcinogenesis. Therefore, we further investigated the effects of S-3-1 on carcinogenesis. In vitro, S-3-1 inhibited the benzo[alpha]pyrene-induced transformation of V79 Chinese hamster lung fibroblasts. At 10-40 mg/kg, S-3-1 was found to inhibit the development of DMBA/croton oil-induced skin papilloma in mice through decreasing the incidence of papilloma, prolonging the latent period of tumor occurrence and reducing tumor number per mouse in a dose-dependent manner. We concluded from this study that S-3-1 might be developed as a new chemopreventive drug.
A novel C31 sterol, 25-methylxestosterol, resulting from quadruple biomethylation in the side chain has been isolated as a trace constituent of the sterol fraction from a Caribbean sponge (Xestospongia sp.). Its structure (1, 24-methylene-25,26,27-trimethylcholesterol) has been elucidated by spectroscopic methods and confirmed by partial synthesis. A biosynthetic route leading to 1 is proposed that is consistent with the hypothesis of stepwise biomethylations and with earlier discoveries of "extended" side chains among marine sterols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.