It is hardly possible to obtain rare earth doped CaWO4 thin films directly through electrochemical techniques. A novel post processing has been proposed to synthesize CaWO4:Eu3+ thin films at room temperature. X-ray diffraction, X-ray photoelectron spectrometry, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that Eu3+-doped CaWO4 films have a tetragonal phase; the content of Eu in the near surface region is much higher than that of the bulk; under the excitation of 310 nm, a sharp emission peak at 616 nm has been observed for Ca0.9WO4:Eu0.13+ thin films.
It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize Tb3+-doped CaWO4thin films. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that Tb3+-doped CaWO4films have a tetragonal phase. The ratio of n(Tb)/[n(Ca)+n(Tb)+n(Na)] decreases with the increase of pH value of TbCl3solutions. When the pH value (adjusted by NaOH) is higher than 5, Na element has been detected in CaWO4:Tb3+thin films. Based on the analysis on the composition and luminescence, it can be concluded that the pH value of TbCl3solutions must be no higher than 9.1, otherwise, no Tb3+-doped CaWO4thin films can be obtained. Under the excitation of 237 nm, sharp emission peaks at 543 and 489 nm have been observed for Tb3+-doped CaWO4:Tb3+thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.