Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.root hair | Botrytis cinerea P lants are sessile organisms and face different environmental changes during their lifespan. To survive various abiotic and biotic stresses, plants synthesize a number of small molecules functioning as phytohormones to elaborately regulate their growth, development, and defense. Two types of phytohormonesethylene (ET) and jasmonate (JA)-are crucial for plant development and defense against necrotrophic fungi infections (1-3). Complicated modes of interaction between ET and JA have been documented in different processes. For example, ET strongly suppresses JA-induced wounding-responsive gene expression, but JA suppresses ET-induced apical hook formation (4, 5), indicative of their antagonisms. Upon necrotrophic fungi infections, plants can quickly produce ET and JA and induce the expression of downstream defense genes (like ERF1, ORA59, and PDF1.2) that help plants tolerate or fight against the fungal pathogens (1). Plants treated with exogenous JA or ET express high levels of defense genes (6, 7), and simultaneous treatment with JA and ET results in the highest expression (8). Nevertheless, in the ET or JA insensitive mutant (ein2 or coi1, respectively), JA and ET alone or in combination fail to induce the expression of those defense genes (8, 9), indicating that the two hormone-signaling pathways are required concomitantly for the activation of plant-defense response. These results suggest that JA and ET act synergistically and mutually dependently in regulating necrotrophic pathogen responses. However, the molecular details underlying such hormone synergy and signaling interdependency are currently unknown.ET is a gaseous hormone, which is perceived by its receptors and represses a Raf-like kinase CON...
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.