We measured the distribution of a forward swimming strain of Caulobacter crescentus near a surface using a three-dimensional tracking technique based on dark field microscopy and found that the swimming bacteria accumulate heavily within a micrometer from the surface. We attribute this accumulation to frequent collisions of the swimming cells with the surface, causing them to align parallel to the surface as they continually move forward. The extent of accumulation at the steady state is accounted for by balancing alignment caused by these collisions with the rotational Brownian motion of the micrometer-sized bacteria. We performed a simulation based on this model, which reproduced the measured results. Additional simulations demonstrate the dependence of accumulation on swimming speed and cell size, showing that longer and faster cells accumulate more near a surface than shorter and slower ones do.
Helicobacter pylori is a helical bacterium that colonizes the stomach in over half of the world’s population. Infection with this bacterium has been linked to peptic ulcer disease and gastric cancer. The bacterium has been shown to affect regulatory pathways in its host cells through specific virulence factors that control gene expression. Infection with H. pylori increases levels of phosphorylation of Raf kinase inhibitor protein (pRKIP) in gastric adenocarcinoma (AGS) cells in vitro and in vivo. We investigated the role of H. pylori in the phosphorylation of RKIP as a possible mechanism to downregulate pro-survival signals in gastric adenocarcinoma. pRKIP induces RKIP transcriptional activity, which serves to induce apoptosis of damaged cells to prevent further tumorigenesis. Infection of wild type and RKIP knockout mice with H. pylori for 2 months further confirmed roles of RKIP and pRKIP in the prevention of gastric cancer progression. Loss of RKIP in AGS cells results in increased expression of the Cag A virulence factor after H. pylori infection and RKIP overexpression inhibits H. pylori-mediated STAT3 phosphorylation and STAT3 and NF-κB transcriptional activity. We examined the role of mTOR (mammalian target of rapamycin) after H. pylori infection on the phosphorylation of RKIP. Cells treated with rapamycin, an inhibitor of mTOR, displayed less expression of pRKIP after H. pylori infection. Microarray antibody analysis was conducted on wild-type and RKIP-knockdown AGS cells and showed that in the absence of RKIP, there was increased expression of pro-tumorigenic proteins such as EGFR, Raf-1, and MAPKs. Although further work is needed to confirm the interaction of RKIP and mTOR in AGS cells as a result of H. pylori infection, we hypothesize that H. pylori-mediated induction of pro-survival signaling in gastric epithelial cells induces a feedback response through the activation of RKIP. The phosphorylated, or active, form of RKIP is important in protecting gastric epithelial cells from tumorigenesis after H. pylori infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.