The practical levels of density functional theory (DFT) for solids (LDA, PBE, PW91, B3LYP) are well-known not to account adequately for the London dispersion (van der Waals attraction) so important in molecular solids, leading to equilibrium volumes for molecular crystals ~10-15% too high. The ReaxFF reactive force field is based on fitting such DFT calculations and suffers from the same problem. In the paper we extend ReaxFF by adding a London dispersion term with a form such that it has low gradients (lg) at valence distances leaving the already optimized valence interactions intact but behaves as 1/R(6) for large distances. We derive here these lg corrections to ReaxFF based on the experimental crystal structure data for graphite, polyethylene (PE), carbon dioxide, and nitrogen and for energetic materials: hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX), pentaerythritol tetranitrate (PETN), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), and nitromethane (NM). After this dispersion correction the average error of predicted equilibrium volumes decreases from 18.5 to 4.2% for the above systems. We find that the calculated crystal structures and equation of state with ReaxFF-lg are in good agreement with experimental results. In particular, we examined the phase transition between α-RDX and γ-RDX, finding that ReaxFF-lg leads to excellent agreement for both the pressure and volume of this transition occurring at ~4.8 GPa and ~2.18 g/cm(3) density from ReaxFF-lg vs 3.9 GPa and ~2.21 g/cm(3) from experiment. We expect ReaxFF-lg to improve the descriptions of the phase diagrams for other energetic materials.
We report the kinetic analysis and mechanism for the initial steps of pyrolysis and combustion of a new fuel material, 1,6-dicyclopropane-2,4-hexyne, that has enormous heats of pyrolysis and combustion, making it a potential high-energy fuel or fuel additive. These studies employ the ReaxFF force field for reactive dynamics (RD) simulations of both pyrolysis and combustion processes for both unimolecular and multimolecular systems. We find that both pyrolysis and combustion initiate from unimolecular reactions, with entropy-driven reactions being most important in both processes. Pyrolysis initiates with extrusion of an ethylene molecule from the fuel molecule and is followed quickly by isomerization of the fuel molecule, which induces additional radicals that accelerate the pyrolysis process. In the combustion process, we find three distinct mechanisms for the O(2) attack on the fuel molecule: (1) attack on the cyclopropane, ring expanding to form the cyclic peroxide which then decomposes; (2) attack onto the central single bond of the diyne which then fissions to form two C(5)H(5)O radicals; (3) attack on the alkyne-cyclopropane moiety to form a seven-membered ring peroxide which then decomposes. Each of these unimolecular combustion processes releases energy that induces additional radicals to accelerate the combustion process. Here oxygen has major effects both as the radical acceptor and as the radical producer. We extract both the effective activation energy and the effective pre-exponential factor by kinetic analysis of pyrolysis and combustion from these ReaxFF simulations. The low value of the derived effective activation energy (26.18 kcal/mol for pyrolysis and 16.40 kcal/mol for combustion) reveals the high activity of this fuel molecule.
Ettringite is a hexacalcium aluminate trisulfate 11 hydrate mineral that forms during Portland cement hydration. 12Its presence plays an important role in controlling the setting 13 rate of the highly reactive aluminate phases in cement paste 14 and has also been associated with severe cracking in cured this work serves as a fundamental tool to further study the kinetics of hydration in cement and concrete.
A ReaxFF force field has been extended and used in the present work to simulate methanol to olefin (MTO) reactions in H-ZSM-5 zeolite. By explicitly considering multibody interactions and thermodynamic conditions, the initial reaction network of MTO in acidic zeolite has been obtained. New reaction mechanisms are proposed based on the simulations. For the activation of methanol, a less possible but very important CH3 radical mechanism is identified in addition to the commonly accepted methoxyl mechanism. The commonly accepted chain-growth mechanism, in which ethene interacts with methyloxide, has been observed. However, it is a small contribution to the total production. The more popular route for the chain growth is attributed to the presence of deprotonated Brønsted sites, which are produced via the activation of methanol molecules. Therefore, the hydrocarbon pool is working with the methanol molecules involved. With the hydrocarbon pool, the chain growth is significantly accelerated. Considering the collision probability, the rate-determining step for MTO is not the activation of methanol as suggested by static calculations but the C–C chain formation. The simulation data are consistent with previously reported experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.