Conversion of ethanol to hydrocarbons by porous zeolite ZSM‐5 is a sustainable alternative compared to crude oil, gas or coal conversion. A quantification and description of micro‐ and macroscopic deactivation kinetics with basic transport and reactor models reveals deeper insight into the dynamics of coking and product formation at varying contact time. A new first order deactivation model helps to separate linear deactivation and autocatalytic acceleration of catalyst decay. A deeper look into product formation reveals a change in selectivity during initiation and deactivation phase from bigger build‐up C5+ to smaller cracking products C3 after formation of coke precursors, which does not coincide with site‐loss and reduction of contact time alone. Thereby, deactivation and switching selectivity in the hydrocarbon pool concept become more deterministic, which paves the way to more selective ethanol conversion processes.
Alumina-containing binders are widely used for the binding of catalyst particles by spray drying and calcination. As a part of the active matrix, they contribute to the catalytic performance of the resulting catalyst grain during hydrocarbon cracking. In this study, correlations are investigated using different compositions of Al- and Si-based binders (AlCl3 and colloidal silica) together with kaolin as a filler and ZSM-5 zeolite as an active compound. It was demonstrated that the conversion of a 50:50 hexane mixture, the selectivity toward unsaturated hydrocarbons, and the shape-selective conversion of the hexane feed are highly dependent on the amount and distribution of alumina in binder formulations. While silica species are distributed near the outer shell of catalyst grains, the alumina species are distributed evenly as an adhesive between the catalyst compounds ZSM-5 and kaolin. An optimum amount of alumina in binder formulations results in an increasing conversion of hydrocarbon feedstock due to optimum in active-site accessibility but only a slight decrease in shape-selective properties compared to pure ZSM-5, resulting in an optimum yield of light olefins, especially propylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.