The quinpirole sensitization model of obsessive-compulsive disorder was used to investigate the functional role that brain regions implicated in a neuroanatomical circuit of obsessive-compulsive disorder may play in compulsive checking behavior. Following repeated injections of saline or quinpirole (0.5mg/kg, twice per week, ×8 injections) to induce compulsive checking, rats received N-methyl-d-aspartate lesions of the nucleus accumbens core (NAc), orbital frontal cortex (OFC) and basolateral amygdala, or sham lesions. When retested at 17days post-surgery, the results showed effects of NAc and OFC but not basolateral amygdala lesion. NAc lesions affected measures indicative of the amount of checking behavior, whereas OFC lesions affected indices of staying away from checking. The pattern of results suggested that the functional roles of the NAc and OFC in checking behavior are to control the vigor of motor performance and focus on goal-directed activity, respectively. Furthermore, similarities in behavior between quinpirole sham rats and saline NAc lesion rats suggested that quinpirole may drive the vigor of checking by inhibition of NAc neurons, and that the NAc may be a site for the negative feedback control of checking.
To assess whether the development and expression of behavioral sensitization to the dopamine D2/D3 agonist quinpirole (QNP) is influenced by coadministration of the kappa opioid receptor agonist U69593, rats received every 3-4 days for a total of 10 treatments an injection of U69593 (0.3 mg/kg) together with an injection of either a postsynaptic (0.5 mg/kg) or a presynaptic dose of QNP (0.05 mg/ kg); locomotor activity was measured after each treatment. Control rats were injected as appropriate with QNP, U69593, and vehicle/ saline. Following chronic treatment, dose-response profiles to QNP were obtained to assess the expression of sensitization; the effect of U69593 on locomotor activity in animals already sensitized to QNP was also assessed. Results showed that cotreatment of U69593 with a postsynaptic dose of QNP doubled the speed and magnitude of sensitization to QNP, while U69593 cotreatment with a presynaptic dose of QNP switched the effects of QNP from locomotor depression to locomotor sensitization. However, U69593 cotreatment with a presynaptic dose of QNP changed a different set of measures of sensitization than did cotreatment with a postsynaptic dose of the dopamine agonist. Together, findings suggest that sensitization to QNP is not a unitary phenomenon but has components that are relatively independent, mediated by distinct pre-and postsynaptic mechanisms and modulated by kappa receptor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.