BackgroundThe New World monkey (Platyrrhini) subfamily Pitheciinae is represented by the genera Pithecia, Chiropotes and Cacajao. In this work we studied the karyotypes of Pithecia irrorata (2n = 48) and Cacajao calvus rubicundus (2n = 45 in males and 2n = 46 in females) by G- and C-banding, NOR staining and chromosome painting using human and Saguinus oedipus whole chromosome probes. The karyotypes of both species were compared with each other and with Chiropotes utahicki (2n = 54) from the literature.ResultsOur results show that members of the Pitheciinae have conserved several chromosome forms found in the inferred ancestral Platyrrhini karyotype (associations of human homologous segments 3a/21, 5/7a, 2b/16b, 8a/18, 14/15a and 10a/16a). Further, the monophyly of this subfamily is supported by three chromosomal synapomorphies (2a/10b, an acrocentric 15/14 and an acrocentric human 19 homolog). In addition, each species presents several autapomorphies. From this data set we established a chromosomal phylogeny of Pitheciinae, resulting in a single most parsimonious tree.ConclusionsIn our chromosomal phylogeny, the genus Pithecia occurred in a more basal position close to the inferred ancestor of Platyrrhini, while C. c. rubicundus and C. utahicki are closely related and are linked by exclusive synapomorphies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.