This paper examines the factors that govern persuasion for a priori UNDECIDED versus DECIDED audience members in the context of on-line debates. We separately study two types of influences: linguistic factors-features of the language of the debate itself; and audience factors-features of an audience member encoding demographic information, prior beliefs, and debate platform behavior. In a study of users of a popular debate platform, we find first that different combinations of linguistic features are critical for predicting persuasion outcomes for UNDECIDED versus DECIDED members of the audience. We additionally find that audience factors have more influence on predicting the side (PRO/CON) that persuaded UNDECIDED users than for DECIDED users that flip their stance to the opposing side. Our results emphasize the importance of considering the undecided and decided audiences separately when studying linguistic factors of persuasion.
High-throughput materials discovery involves the rapid synthesis, measurement, and characterization of many different but structurally related materials. A central problem in materials discovery, the phase map identification problem, involves the determination of the crystal structure of materials from materials composition and structural characterization data. We present Phase-Mapper, a novel solution platform that allows humans to interact with both the data and products of AI algorithms, including the incorporation of human feedback to constrain or initialize solutions. Phase-Mapper is compatible with any spectral demixing algorithm, including our novel solver, AgileFD, which is based on convolutive non-negative matrix factorization. AgileFD allows materials scientists to rapidly interpret XRD patterns, and can incorporate constraints to capture the physics of the materials as well as human feedback. We compare three solver variants with previously proposed methods in a large-scale experiment involving 20 synthetic systems, demonstrating the efficacy of imposing physical constraints using AgileFD. Since the deployment of Phase-Mapper at the Department of Energy’s Joint Center for Artificial Photosynthesis (JCAP), thousands of X-ray diffraction patterns have been processed and the results are yielding discovery of new materials for energy applications, as exemplified by the discovery of a new family of metal oxide solar light absorbers, among the previously unsolved Nb-Mn-V oxide system, which is provided here as an illustrative example. Phase-Mapper is also being deployed at the Stanford Synchrotron Radiation Lightsource (SSRL) to enable phase mapping on datasets in real time.
High-Throughput materials discovery involves the rapid synthesis, measurement, and characterization of many different but structurally-related materials. A key problem in materials discovery, the phase map identification problem, involves the determination of the crystal phase diagram from the materials composition and structural characterization data. We present Phase-Mapper, a novel AI platform to solve the phase map identification problem that allows humans to interact with both the data and products of AI algorithms, including the incorporation of human feedback to constrain or initialize solutions. Phase-Mapper affords incorporation of any spectral demixing algorithm, including our novel solver, Ag-ileFD, which is based on a convolutive non-negative matrix factorization algorithm. AgileFD can incorporate constraints to capture the physics of the materials as well as human feedback. We compare three solver variants with previously proposed methods in a large-scale experiment involving 20 synthetic systems, demonstrating the efficacy of imposing physical constrains using AgileFD. Phase-Mapper has also been used by materials scientists to solve a wide variety of phase diagrams, including the previously unsolved Nb-Mn-V oxide system, which is provided here as an illustrative example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.