AbstractEfficient estimation of parameters is a major objective in analyzing longitudinal data. We propose two generalized empirical likelihood-based methods that take into consideration within-subject correlations. A nonparametric version of the Wilks theorem for the limiting distributions of the empirical likelihood ratios is derived. It is shown that one of the proposed methods is locally efficient among a class of within-subject variance-covariance matrices. A simulation study is conducted to investigate the finite sample properties of the proposed methods and compares them with the block empirical likelihood method by You et al. (2006) and the normal approximation with a correctly estimated variance-covariance. The results suggest that the proposed methods are generally more efficient than existing methods that ignore the correlation structure, and are better in coverage compared to the normal approximation with correctly specified within-subject correlation. An application illustrating our methods and supporting the simulation study results is presented.
This paper considers the three-parameter exponentiated Weibull family under type II censoring. It first graphically illustrates the shape property of the hazard function. Then, it proposes a simple algorithm for computing the maximum likelihood estimator and derives the Fisher information matrix. The latter one is represented through a single integral in terms of hazard function, hence it solves the problem of computation difficulty in constructing inference for the maximum likelihood estimator. Real data analysis is conducted to illustrate the effect of censoring rate on the maximum likelihood estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.