SummaryBackgroundThe age-specific association between blood pressure and vascular disease has been studied mostly in high-income countries, and before the widespread use of brain imaging for diagnosis of the main stroke types (ischaemic stroke and intracerebral haemorrhage). We aimed to investigate this relationship among adults in China.Methods512 891 adults (59% women) aged 30–79 years were recruited into a prospective study from ten areas of China between June 25, 2004, and July 15, 2008. Participants attended assessment centres where they were interviewed about demographic and lifestyle characteristics, and their blood pressure, height, and weight were measured. Incident disease was identified through linkage to local mortality records, chronic disease registries, and claims to the national health insurance system. We used Cox regression analysis to produce adjusted hazard ratios (HRs) relating systolic blood pressure to disease incidence. HRs were corrected for regression dilution to estimate associations with long-term average (usual) systolic blood pressure.FindingsDuring a median follow-up of 9 years (IQR 8–10), there were 88 105 incident vascular and non-vascular chronic disease events (about 90% of strokes events were diagnosed using brain imaging). At ages 40–79 years (mean age at event 64 years [SD 9]), usual systolic blood pressure was continuously and positively associated with incident major vascular disease throughout the range 120–180 mm Hg: each 10 mm Hg higher usual systolic blood pressure was associated with an approximately 30% higher risk of ischaemic heart disease (HR 1·31 [95% CI 1·28–1·34]) and ischaemic stroke (1·30 [1·29–1·31]), but the association with intracerebral haemorrhage was about twice as steep (1·68 [1·65–1·71]). HRs for vascular disease were twice as steep at ages 40–49 years than at ages 70–79 years. Usual systolic blood pressure was also positively associated with incident chronic kidney disease (1·40 [1·35–1·44]) and diabetes (1·14 [1·12–1·15]). About half of all vascular deaths in China were attributable to elevated blood pressure (ie, systolic blood pressure >120 mm Hg), accounting for approximately 1 million deaths (<80 years of age) annually.InterpretationAmong adults in China, systolic blood pressure was continuously related to major vascular disease with no evidence of a threshold down to 120 mm Hg. Unlike previous studies in high-income countries, blood pressure was more strongly associated with intracerebral haemorrhage than with ischaemic stroke. Even small reductions in mean blood pressure at a population level could be expected to have a major impact on vascular morbidity and mortality.FundingUK Wellcome Trust, UK Medical Research Council, British Heart Foundation, Cancer Research UK, Kadoorie Charitable Foundation, Chinese Ministry of Science and Technology, and the National Science Foundation of China.
Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-α-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function.
Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last followup on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.