Topological insulators display unique properties, such as the quantum spin Hall effect, because time-reversal symmetry allows charges and spins to propagate along the edge or surface of the topological insulator without scattering. However, the direct manipulation of these edge/surface states is difficult because they are significantly outnumbered by bulk carriers. Here, we report experimental evidence for the modulation of these surface states by using a gate voltage to control quantum oscillations in Bi(2)Te(3) nanoribbons. Surface conduction can be significantly enhanced by the gate voltage, with the mobility and Fermi velocity reaching values as high as ~5,800 cm(2) V(-1) s(-1) and ~3.7 × 10(5) m s(-1), respectively, with up to ~51% of the total conductance being due to the surface states. We also report the first observation of h/2e periodic oscillations, suggesting the presence of time-reversed paths with the same relative zero phase at the interference point. The high surface conduction and ability to manipulate the surface states demonstrated here could lead to new applications in nanoelectronics and spintronics.
We demonstrated a facile route for one-pot synthesis of visible light responsive nitrogen doped anatase TiO(2) sheets with dominant {001} facets from TiN. The synthesized anatase TiO(2) sheets show a strong and stable capability of generating photocatalysis active species of *OH radicals and hydrogen evolution from splitting water under visible light irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.