Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.
Sucralose is the most widely used artificial sweetener, and its health effects have been highly debated over the years. In particular, previous studies have shown that sucralose consumption can alter the gut microbiota. The gut microbiome plays a key role in processes related to host health, such as food digestion and fermentation, immune cell development, and enteric nervous system regulation. Inflammation is one of the most common effects associated with gut microbiome dysbiosis, which has been linked to a series of human diseases, such as diabetes and obesity. The aim of this study was to investigate the structural and functional effects of sucralose on the gut microbiota and associated inflammation in the host. In this study, C57BL/6 male mice received sucralose in their drinking water for 6 months. The difference in gut microbiota composition and metabolites between control and sucralose-treated mice was determined using 16S rRNA gene sequencing, functional gene enrichment analysis and metabolomics. Inflammatory gene expression in tissues was analyzed by RT-PCR. Alterations in bacterial genera showed that sucralose affects the gut microbiota and its developmental dynamics. Enrichment of bacterial pro-inflammatory genes and disruption in fecal metabolites suggest that 6-month sucralose consumption at the human acceptable daily intake (ADI) may increase the risk of developing tissue inflammation by disrupting the gut microbiota, which is supported by elevated pro-inflammatory gene expression in the liver of sucralose-treated mice. Our results highlight the role of sucralose-gut microbiome interaction in regulating host health-related processes, particularly chronic inflammation.
Artificial sweeteners have been widely used in the modern diet, and their observed effects on human health have been inconsistent, with both beneficial and adverse outcomes reported. Obesity and type 2 diabetes have dramatically increased in the U.S. and other countries over the last two decades. Numerous studies have indicated an important role of the gut microbiome in body weight control and glucose metabolism and regulation. Interestingly, the artificial sweetener saccharin could alter gut microbiota and induce glucose intolerance, raising questions about the contribution of artificial sweeteners to the global epidemic of obesity and diabetes. Acesulfame-potassium (Ace-K), a FDA-approved artificial sweetener, is commonly used, but its toxicity data reported to date are considered inadequate. In particular, the functional impact of Ace-K on the gut microbiome is largely unknown. In this study, we explored the effects of Ace-K on the gut microbiome and the changes in fecal metabolic profiles using 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics. We found that Ace-K consumption perturbed the gut microbiome of CD-1 mice after a 4-week treatment. The observed body weight gain, shifts in the gut bacterial community composition, enrichment of functional bacterial genes related to energy metabolism, and fecal metabolomic changes were highly gender-specific, with differential effects observed for males and females. In particular, ace-K increased body weight gain of male but not female mice. Collectively, our results may provide a novel understanding of the interaction between artificial sweeteners and the gut microbiome, as well as the potential role of this interaction in the development of obesity and the associated chronic inflammation.
We have synthesized three new phenylethynylated carbazole boronic acid sensors, which were predicted to display novel d-PeT fluorescence transduction (PeT, photoinduced electron transfer; fluorophore as the electron donor of the electron transfer, ET) by DFT/TDDFT calculations. The d-PeT effect is characterized by a lower background fluorescence at acidic pH than at neutral pH, which is in stark contrast to the normal a-PeT effect (fluorophore as the electron acceptor of the ET) that shows a strong and undesired background fluorescence at acidic pH. Our experimental results confirmed the theoretical predictions and d-PeT was observed for two of the sensors (with p-dimethylaminophenylethynyl substitution at 6-position of the carbazole core). For the third sensor (with phenylethynyl substitution at 6-position of the carbazole core), however, not d-PeT but rather the normal a-PeT was observed. The discrepancy between the DFT/ TDDFT calculations and the experimental observations can be rationalized using free energy changes (Rehm-Weller equations) and the rate constants for the ET (k ET , Marcus equation). These new d-PeT boronic acid sensors show improved photophysical properties compared to the known d-PeT sensor reported previously by us. In particular, the fluorescence transduction efficiency of the new sensors was improved 8-fold when compared to the known d-PeT boronic acid sensors. Novel fluorescence enhancement/reduction was observed for one of the sensors upon binding with mandelic acid or tartaric acid at pH 5.6. The effect of pH as well as the bonding with analytes on the emission of the sensors were rationalized using DFT/ TDDFT calculations. We believe that rational sensor design aided by DFT/TDDFT calculations as well as using free energy changes and electron transfer rate constants to study the emission properties of PeT sensors will become an essential tool in the design of new fluorophores or fluorescent sensors with predetermined photophysical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.