Foxp3+ T-regulatory (Treg) cells maintain immune homeostasis and limit autoimmunity, but can also curtail host immune responses to various types of tumors1,2. Foxp3+ Tregs are therefore considered promising targets to enhance anti-tumor immunity, and efforts are underway to develop approaches for their therapeutic modulation. However, while studies showing that Foxp3+ Treg depletion experimentally can enhance anti-tumor responses provide proof-of-principle, they lack clear translational potential and have various shortcomings. Histone/protein acetyltransferases (HATs) promote chromatin accessibility, gene transcription and the function of multiple transcription factors and non-histone proteins3,4. We now report that conditional deletion or pharmacologic inhibition of one HAT, p300 (Ep300, KAT3B), in Foxp3+ Tregs, increased TCR-induced apoptosis in Tregs, impaired Treg suppressive function and peripheral Treg induction, and limited tumor growth in immunocompetent, but not in immunodeficient, hosts. Our data thereby demonstrate that p300 is important for Foxp3+ Treg function and homeostasis in vivo and in vitro, and identify novel mechanisms by which appropriate small molecule inhibitors can diminish Treg function without overtly impairing T-effector (Teff) cell responses or inducing autoimmunity. Collectively, these data suggest a new approach for cancer immunotherapy.
Vesicular stomatitis virus (VSV) has shown promise as an oncolytic agent, although unmodified VSV can be neurotoxic. To avoid toxicity, a vector was created by introducing the interferon-b (IFN-b) gene (VSV.IFN-b). We conducted this study to determine the ability of VSV.IFN-b to lyse human cancer (mesothelioma) cells and to evaluate the potential of this recombinant virus for clinical translation. Four normal human mesothelial and 12 mesothelioma cell lines were tested for their susceptibility to VSV vectors in vitro. VSV.hIFN-b did not cause cytotoxicity in any normal lines. Only 4 of 12 lines were effectively lysed by VSV.hIFN-b. In the eight resistant lines, pretreatment with IFN-b prevented lysis of cells by VSV.GFP, and VSV infection or addition of IFN-b protein resulted in the upregulation of double-stranded RNA-dependent protein kinase (PKR), myxovirus resistance A (MxA), and 2 0 ,5 0 -oligo-adenylate-synthetase (2 0 5 0 -OAS) mRNA. In the susceptible lines, there was no protection by pretreatment with IFN-b protein and no IFN-or VSV-induced changes in PKR, MxA, and 2 0 5 0 -OAS mRNA. This complete lack of IFN responsiveness could be explained by marked downregulation of interferon alpha receptors (IFNARs), p48, and PKR in both the mesothelioma cell lines and primary tumor biopsies screened. Presence of p48 in three tumor samples predicted responsiveness to IFN. Our data indicate that many mesothelioma tumors have partially intact IFN pathways that may affect the efficacy of oncolytic virotherapy. However, it may be feasible to prescreen individual susceptibility to VSV.IFN-b by immunostaining for the presence of p48 protein.
Drugs that can rapidly inhibit respiratory infection from influenza or other respiratory pathogens are needed. One approach is to engage primary innate immune defenses against viral infection, such as activating the IFN pathway. In this study, we report that a small, cell-permeable compound called 5,6-di-methylxanthenone-4-acetic acid (DMXAA) can induce protection against vesicular stomatitis virus in vitro and H1N1 influenza A virus in vitro and in vivo through innate immune activation. Using the mouse C10 bronchial epithelial cell line and primary cultures of nasal epithelial cells, we demonstrate DMXAA activates the IFN regulatory factor-3 pathway leading to production of IFN-β and subsequent high-level induction of IFN-β-dependent proteins, such as myxovirus resistance 1 (Mx1) and 2',5'-oligoadenylate synthetase 1 (OAS1). Mice treated with DMXAA intranasally elevate mRNA/protein expression of Mx1 and OAS1 in the nasal mucosa, trachea, and lung. When challenged intranasally with a lethal dose of H1N1 influenza A virus, DMXAA reduced viral titers in the lungs and protected 80% of mice from death, even when given at 24 hours before infection. These data show that agents, like DMXAA, that can directly activate innate immune pathways, such as the IFN regulatory factor-3/IFN-β system, in respiratory epithelial cells can be used to protect from influenza pneumonia and potentially in other respiratory viral infections. Development of this approach in humans could be valuable for protecting health care professionals and "first responders" in the early stages of viral pandemics or bioterror attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.