To obtain intermediate temperature alloy solders with melting temperature of 400~600°C, (Ag-Cu28)-25Sn and (Ag-Cu28)-30Sn alloys were prepared by high energy ball milling. Ag-Cu-Sn nanocrystalline alloys have been obtained after milling for 40h. XRD results show that the (Ag-Cu28)-25Sn alloy consists of Ag4Sn and Cu3Sn, and the (Ag-Cu28)-30Sn alloy contains Ag4Sn, Cu3Sn and Cu6Sn5. The small polydispersed particles with size ranging from 1μm to about 25μm are observed from the (Ag-Cu28)-30Sn alloys milled for 40h by SEM. A large amount of small particles comprised of two or three grains are commonly observed by HRTEM, and average grain size is about 17.50nm. DSC results indicate that the melting points of the (Ag-Cu28)-25Sn and (Ag-Cu28)-30Sn alloys milled for 40h are 548.5°C and 539.3°C, respectively.
Nanocrystalline Ag-28Cu supersaturated solid solution is prepared by mechanical alloying (MA) using a planetary ball mill. The mechanical alloyed powders are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and differential scanning calorimeter (DSC). XRD patterns show that the main peak of Ag-28Cu supersaturated solid solution exists at about 2θ=39° when the milling time is 30h. HRTEM images show that the grain sizes of as-prepared solid solutions have distributions from 10nm to 15nm. The interplanar spacing of (111) plane for fcc Ag-28Cu supersaturated solid solution is about 2.24Å. DSC measurement result indicates that the melting temperature of Ag-28Cu supersaturated solid solution is 783.8°C. The Ag(Cu) supersaturated solid solutions are in metastable state and they will be transformed into Ag-rich phase and Cu-rich phase simultaneously by annealing at 215°C- 415°C.
To obtain novel intermediate temperature alloy solders with melting temperature of 400~600°C, (Ag-Cu28)-25Sn alloy ribbons were prepared by high frequency induction melting and melt spinning at different quenching linear speed. The effect of the development of solidification structure on melting properties and microhardness of the ribbons were investigated. The XRD results show that the as-prepared alloy ribbons have the same phase composition as the master alloy, which consists of Ag4Sn and Cu3Sn. With the quenching linear speed increasing, the solidification structures are refined and change from dendritic crystals to uniform granular crystals. As the quenching linear speed increases up to 32.25m/s, the grain size of the alloy ribbon has a distribution ranging from submicron to about 2μm. The DSC results indicate that the melting properties of alloy ribbons strongly depend on the solidification structure, and the melting temperature of alloy ribbons decreases with the quenching linear speed increasing. The lowest liquidus points of the alloy ribbon prepared at linear speed of 32.25m/s are located at 473.6°C and 524.7°C, respectively. The refined solidification structure notably increases the microhardness of the alloy ribbons, and the largest hardness value of 396HV is obtained for the alloy ribbon prepared at linear speed of 32.25m/s, which increases 27.0% compared with the master alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.